{"title":"Deformation behavior study of SAC305 solder joints under shear and tensile loading by crystal plasticity finite element method","authors":"Qingyun Zhu, Zhiyong Huang, Hongjiang Qian, Jian Wang, Zeshuai Shen, Qikai Zhou","doi":"10.1016/j.mejo.2024.106471","DOIUrl":null,"url":null,"abstract":"<div><div>Micro solder joints experience various loads during operation, and the failure of a single micro solder joint can impact the overall reliability of the entire microsystem. This study utilized the Crystal Plasticity Finite Element Method (CPFEM) to create a polycrystalline model that accurately represents the shape of solder joints. By calibrating the crystal plasticity characteristics of SAC305 material solder joints using macroscopic stress-strain curves, the model successfully simulates the deformation mechanisms of micro-solder joints under both tensile and shear loads. This paper highlights that equivalent plastic strain serves as a key indicator of solder joint fracture behavior, revealing that strain components have varying effects on cracking: shear strain was found to cause crack initiation, while normal strain was found to promote crack extension. Moreover, Grain boundary features and orientation lead to uneven plastic strain by affecting the slip system and the Schmidt factor, especially small Schmidt factor grains at triple grain boundary intersections are more susceptible to crack initiation. Additionally, the study found that solder joints exhibit more pronounced mechanical responses under tensile loading compared to shear loading. These insights offer valuable guidance for the design and manufacturing of micro-solder joints.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"154 ","pages":"Article 106471"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124001759","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Micro solder joints experience various loads during operation, and the failure of a single micro solder joint can impact the overall reliability of the entire microsystem. This study utilized the Crystal Plasticity Finite Element Method (CPFEM) to create a polycrystalline model that accurately represents the shape of solder joints. By calibrating the crystal plasticity characteristics of SAC305 material solder joints using macroscopic stress-strain curves, the model successfully simulates the deformation mechanisms of micro-solder joints under both tensile and shear loads. This paper highlights that equivalent plastic strain serves as a key indicator of solder joint fracture behavior, revealing that strain components have varying effects on cracking: shear strain was found to cause crack initiation, while normal strain was found to promote crack extension. Moreover, Grain boundary features and orientation lead to uneven plastic strain by affecting the slip system and the Schmidt factor, especially small Schmidt factor grains at triple grain boundary intersections are more susceptible to crack initiation. Additionally, the study found that solder joints exhibit more pronounced mechanical responses under tensile loading compared to shear loading. These insights offer valuable guidance for the design and manufacturing of micro-solder joints.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.