Jibo Yue , Jian Wang , Zhaoying Zhang , Changchun Li , Hao Yang , Haikuan Feng , Wei Guo
{"title":"Estimating crop leaf area index and chlorophyll content using a deep learning-based hyperspectral analysis method","authors":"Jibo Yue , Jian Wang , Zhaoying Zhang , Changchun Li , Hao Yang , Haikuan Feng , Wei Guo","doi":"10.1016/j.compag.2024.109653","DOIUrl":null,"url":null,"abstract":"<div><div>The crop leaf area index (LAI) and leaf chlorophyll content (LCC) are essential indicators that reflect crop growth status, and their accurate estimation is helpful for agricultural management decision-making. Traditional hyperspectral estimation methods for crop LAI and LCC from canopy spectra face challenges due to intricate soil backgrounds, canopy structural environments, and varying observational conditions. This paper proposes an LAI and LCC estimation method based on hyperspectral remote sensing, a radiative transfer model (RTM), and a leaf area index and leaf chlorophyll content deep learning network (LACNet). The LACNet architecture was developed utilizing deep and shallow feature fusion, blocks, and a hyperspectral-to-image transform (HIT) concept, aiming to improve LAI and LCC estimation. We used a field-based spectrometer to collect a dataset comprising 1,234 spectral measurements across five crop types: wheat, maize, potato, rice, and soybean. We used properties optique spectrales des feuilles and scattering by arbitrarily inclined leaves (PROSAIL) to generate a simulated spectra dataset (n = 145,152) representing complex farmland conditions for the five abovementioned crops, considering the variations in soil type, soil moisture, LAI, LCC, etc. The LACNet deep learning model sequentially uses RTM simulated and field-based spectra datasets for training, achieving higher universality and validation accuracy. We also analyzed the LACNet model’s interpretability for LAI and LCC estimation based on the gradient-weighted class activation mapping theory. From our research, we drew the following conclusions: (1) The shallow network features are sensitive to the LAI and LCC in the entire visible band, consistent with our correlation analysis results, while the deep network sensitive areas are mainly concentrated in the RE + VIS and RE + NIR regions of the HIT images. (2) The LACNet deep learning model (LAI: coefficient of determination (<em>R<sup>2</sup></em>) = 0.770, root mean square error (RMSE) = 0.968 m<sup>2</sup>/m<sup>2</sup>; LCC: <em>R</em><sup>2</sup> = 0.765, RMSE = 4.547 Dualex readings) can provide higher crop LAI and LCC estimation accuracy than widely used spectral feature and statistical regression methods (LCC: <em>R</em><sup>2</sup> = 0.491–0.620, RMSE = 5.804–6.691 Dualex readings; LAI: <em>R</em><sup>2</sup> = 0.476–0.716, RMSE = 1.089–1.482 m<sup>2</sup>/m<sup>2</sup>). The results of this study highlight the potential of the LACNet deep learning model as an effective and robust tool for accurately estimating crop LAI and LCC.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109653"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010445","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The crop leaf area index (LAI) and leaf chlorophyll content (LCC) are essential indicators that reflect crop growth status, and their accurate estimation is helpful for agricultural management decision-making. Traditional hyperspectral estimation methods for crop LAI and LCC from canopy spectra face challenges due to intricate soil backgrounds, canopy structural environments, and varying observational conditions. This paper proposes an LAI and LCC estimation method based on hyperspectral remote sensing, a radiative transfer model (RTM), and a leaf area index and leaf chlorophyll content deep learning network (LACNet). The LACNet architecture was developed utilizing deep and shallow feature fusion, blocks, and a hyperspectral-to-image transform (HIT) concept, aiming to improve LAI and LCC estimation. We used a field-based spectrometer to collect a dataset comprising 1,234 spectral measurements across five crop types: wheat, maize, potato, rice, and soybean. We used properties optique spectrales des feuilles and scattering by arbitrarily inclined leaves (PROSAIL) to generate a simulated spectra dataset (n = 145,152) representing complex farmland conditions for the five abovementioned crops, considering the variations in soil type, soil moisture, LAI, LCC, etc. The LACNet deep learning model sequentially uses RTM simulated and field-based spectra datasets for training, achieving higher universality and validation accuracy. We also analyzed the LACNet model’s interpretability for LAI and LCC estimation based on the gradient-weighted class activation mapping theory. From our research, we drew the following conclusions: (1) The shallow network features are sensitive to the LAI and LCC in the entire visible band, consistent with our correlation analysis results, while the deep network sensitive areas are mainly concentrated in the RE + VIS and RE + NIR regions of the HIT images. (2) The LACNet deep learning model (LAI: coefficient of determination (R2) = 0.770, root mean square error (RMSE) = 0.968 m2/m2; LCC: R2 = 0.765, RMSE = 4.547 Dualex readings) can provide higher crop LAI and LCC estimation accuracy than widely used spectral feature and statistical regression methods (LCC: R2 = 0.491–0.620, RMSE = 5.804–6.691 Dualex readings; LAI: R2 = 0.476–0.716, RMSE = 1.089–1.482 m2/m2). The results of this study highlight the potential of the LACNet deep learning model as an effective and robust tool for accurately estimating crop LAI and LCC.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.