Estimating crop leaf area index and chlorophyll content using a deep learning-based hyperspectral analysis method

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Jibo Yue , Jian Wang , Zhaoying Zhang , Changchun Li , Hao Yang , Haikuan Feng , Wei Guo
{"title":"Estimating crop leaf area index and chlorophyll content using a deep learning-based hyperspectral analysis method","authors":"Jibo Yue ,&nbsp;Jian Wang ,&nbsp;Zhaoying Zhang ,&nbsp;Changchun Li ,&nbsp;Hao Yang ,&nbsp;Haikuan Feng ,&nbsp;Wei Guo","doi":"10.1016/j.compag.2024.109653","DOIUrl":null,"url":null,"abstract":"<div><div>The crop leaf area index (LAI) and leaf chlorophyll content (LCC) are essential indicators that reflect crop growth status, and their accurate estimation is helpful for agricultural management decision-making. Traditional hyperspectral estimation methods for crop LAI and LCC from canopy spectra face challenges due to intricate soil backgrounds, canopy structural environments, and varying observational conditions. This paper proposes an LAI and LCC estimation method based on hyperspectral remote sensing, a radiative transfer model (RTM), and a leaf area index and leaf chlorophyll content deep learning network (LACNet). The LACNet architecture was developed utilizing deep and shallow feature fusion, blocks, and a hyperspectral-to-image transform (HIT) concept, aiming to improve LAI and LCC estimation. We used a field-based spectrometer to collect a dataset comprising 1,234 spectral measurements across five crop types: wheat, maize, potato, rice, and soybean. We used properties optique spectrales des feuilles and scattering by arbitrarily inclined leaves (PROSAIL) to generate a simulated spectra dataset (n = 145,152) representing complex farmland conditions for the five abovementioned crops, considering the variations in soil type, soil moisture, LAI, LCC, etc. The LACNet deep learning model sequentially uses RTM simulated and field-based spectra datasets for training, achieving higher universality and validation accuracy. We also analyzed the LACNet model’s interpretability for LAI and LCC estimation based on the gradient-weighted class activation mapping theory. From our research, we drew the following conclusions: (1) The shallow network features are sensitive to the LAI and LCC in the entire visible band, consistent with our correlation analysis results, while the deep network sensitive areas are mainly concentrated in the RE + VIS and RE + NIR regions of the HIT images. (2) The LACNet deep learning model (LAI: coefficient of determination (<em>R<sup>2</sup></em>) = 0.770, root mean square error (RMSE) = 0.968 m<sup>2</sup>/m<sup>2</sup>; LCC: <em>R</em><sup>2</sup> = 0.765, RMSE = 4.547 Dualex readings) can provide higher crop LAI and LCC estimation accuracy than widely used spectral feature and statistical regression methods (LCC: <em>R</em><sup>2</sup> = 0.491–0.620, RMSE = 5.804–6.691 Dualex readings; LAI: <em>R</em><sup>2</sup> = 0.476–0.716, RMSE = 1.089–1.482 m<sup>2</sup>/m<sup>2</sup>). The results of this study highlight the potential of the LACNet deep learning model as an effective and robust tool for accurately estimating crop LAI and LCC.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109653"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010445","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The crop leaf area index (LAI) and leaf chlorophyll content (LCC) are essential indicators that reflect crop growth status, and their accurate estimation is helpful for agricultural management decision-making. Traditional hyperspectral estimation methods for crop LAI and LCC from canopy spectra face challenges due to intricate soil backgrounds, canopy structural environments, and varying observational conditions. This paper proposes an LAI and LCC estimation method based on hyperspectral remote sensing, a radiative transfer model (RTM), and a leaf area index and leaf chlorophyll content deep learning network (LACNet). The LACNet architecture was developed utilizing deep and shallow feature fusion, blocks, and a hyperspectral-to-image transform (HIT) concept, aiming to improve LAI and LCC estimation. We used a field-based spectrometer to collect a dataset comprising 1,234 spectral measurements across five crop types: wheat, maize, potato, rice, and soybean. We used properties optique spectrales des feuilles and scattering by arbitrarily inclined leaves (PROSAIL) to generate a simulated spectra dataset (n = 145,152) representing complex farmland conditions for the five abovementioned crops, considering the variations in soil type, soil moisture, LAI, LCC, etc. The LACNet deep learning model sequentially uses RTM simulated and field-based spectra datasets for training, achieving higher universality and validation accuracy. We also analyzed the LACNet model’s interpretability for LAI and LCC estimation based on the gradient-weighted class activation mapping theory. From our research, we drew the following conclusions: (1) The shallow network features are sensitive to the LAI and LCC in the entire visible band, consistent with our correlation analysis results, while the deep network sensitive areas are mainly concentrated in the RE + VIS and RE + NIR regions of the HIT images. (2) The LACNet deep learning model (LAI: coefficient of determination (R2) = 0.770, root mean square error (RMSE) = 0.968 m2/m2; LCC: R2 = 0.765, RMSE = 4.547 Dualex readings) can provide higher crop LAI and LCC estimation accuracy than widely used spectral feature and statistical regression methods (LCC: R2 = 0.491–0.620, RMSE = 5.804–6.691 Dualex readings; LAI: R2 = 0.476–0.716, RMSE = 1.089–1.482 m2/m2). The results of this study highlight the potential of the LACNet deep learning model as an effective and robust tool for accurately estimating crop LAI and LCC.
利用基于深度学习的高光谱分析方法估算作物叶面积指数和叶绿素含量
作物叶面积指数(LAI)和叶片叶绿素含量(LCC)是反映作物生长状况的重要指标,对它们的准确估算有助于农业管理决策。由于复杂的土壤背景、冠层结构环境和不同的观测条件,传统的高光谱冠层光谱作物叶面积指数和叶绿素含量估算方法面临挑战。本文提出了一种基于高光谱遥感、辐射传递模型(RTM)以及叶面积指数和叶绿素含量深度学习网络(LACNet)的 LAI 和 LCC 估算方法。LACNet 架构是利用深层和浅层特征融合、块和高光谱到图像转换(HIT)概念开发的,旨在改进 LAI 和 LCC 估算。我们使用田间光谱仪收集了一个数据集,其中包括对小麦、玉米、马铃薯、水稻和大豆五种作物类型的 1,234 次光谱测量。考虑到土壤类型、土壤湿度、LAI、LCC 等因素的变化,我们利用任意倾斜叶片的光谱和散射特性(PROSAIL)生成了一个模拟光谱数据集(n = 145,152),代表了上述五种作物的复杂农田条件。LACNet 深度学习模型依次使用 RTM 模拟数据集和田间光谱数据集进行训练,实现了更高的普适性和验证精度。我们还基于梯度加权类激活映射理论,分析了 LACNet 模型在 LAI 和 LCC 估算中的可解释性。通过研究,我们得出以下结论:(1)浅层网络特征对整个可见光波段的 LAI 和 LCC 敏感,这与我们的相关性分析结果一致,而深层网络敏感区域主要集中在 HIT 图像的 RE + VIS 和 RE + NIR 区域。(2) LACNet 深度学习模型(LAI:决定系数 (R2) = 0.770,均方根误差 (RMSE) = 0.968 m2/m2;LCC:R2 = 0.765,均方根误差 = 4.547 Dualex 读数)与广泛使用的光谱特征和统计回归方法(LCC:R2 = 0.491-0.620, RMSE = 5.804-6.691 Dualex 读数;LAI:R2 = 0.476-0.716, RMSE = 1.089-1.482 m2/m2)。这项研究的结果凸显了 LACNet 深度学习模型作为准确估算作物 LAI 和 LCC 的有效、稳健工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信