Sajjad Arefdehghani , Alireza Rostamzadeh Khosroshahi , Navid Kousheshi , Ali Saberi Mehr , Hossein Nami
{"title":"Techno-economic assessment of decentralized low-carbon power plants based on solid oxide fuel cell equipped with calcium looping carbon capture","authors":"Sajjad Arefdehghani , Alireza Rostamzadeh Khosroshahi , Navid Kousheshi , Ali Saberi Mehr , Hossein Nami","doi":"10.1016/j.energy.2024.133720","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating solid oxide fuel cells (SOFCs) with carbon capture technologies aligns with the intention to decarbonize the electricity sector. This study explores two configurations of SOFCs combined with calcium looping (CaL) carbon capture technology (SOFC/CaL): one with auxiliary heaters and another with additional fuel to supply the energy required for the carbon capture process. Results indicate that the electrical efficiency of the SOFC/CaL system is approximately 26 % lower than that of a standalone SOFC, though the overall efficiency (considering both electricity and heat as products) remains comparable. However, CO<sub>2</sub> emission is 314.7 kg/MWh for standalone SOFC, 125.8 kg/MWh for SOFC/CaL equipped with auxiliary heaters, and 22.4 kg/MWh for SOFC/CaL retrofitted with additional fuel. The scale of the SOFC and the fuel price significantly affect the carbon capture economy and the required CO<sub>2</sub> tax for cost parity. For a 10 MW plant with a fuel cost of 10 USD/GJ, the levelized cost of electricity is estimated at 66.7 USD/MWh for the standalone SOFC and 82.5 USD/MWh for the SOFC/CaL. A CO<sub>2</sub> tax of 39–53 USD/tCO<sub>2</sub> is necessary to achieve cost parity.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133720"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224034984","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating solid oxide fuel cells (SOFCs) with carbon capture technologies aligns with the intention to decarbonize the electricity sector. This study explores two configurations of SOFCs combined with calcium looping (CaL) carbon capture technology (SOFC/CaL): one with auxiliary heaters and another with additional fuel to supply the energy required for the carbon capture process. Results indicate that the electrical efficiency of the SOFC/CaL system is approximately 26 % lower than that of a standalone SOFC, though the overall efficiency (considering both electricity and heat as products) remains comparable. However, CO2 emission is 314.7 kg/MWh for standalone SOFC, 125.8 kg/MWh for SOFC/CaL equipped with auxiliary heaters, and 22.4 kg/MWh for SOFC/CaL retrofitted with additional fuel. The scale of the SOFC and the fuel price significantly affect the carbon capture economy and the required CO2 tax for cost parity. For a 10 MW plant with a fuel cost of 10 USD/GJ, the levelized cost of electricity is estimated at 66.7 USD/MWh for the standalone SOFC and 82.5 USD/MWh for the SOFC/CaL. A CO2 tax of 39–53 USD/tCO2 is necessary to achieve cost parity.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.