{"title":"Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory","authors":"Biao Wu, Shaohua Zhang, Chenxin Yuan, Xian Wang, Fei Wang, Shengqi Zhang","doi":"10.1016/j.energy.2024.133703","DOIUrl":null,"url":null,"abstract":"<div><div>To tackle the issues of cooperative energy and reserve trading as well as fair cooperative benefit allocation among multiple integrated energy systems (IESs), this paper proposes a two-stage cooperative energy and reserve trading model for multiple integrated energy systems (MIESs). Specifically, at day-ahead stage, MIESs aim to maximize their overall profit through cooperative electricity and heat trading. At real-time stage, MIESs trade demand response (DR) reserve to minimize the overall wind power deviation compensation cost. To reduce the complexity in model solution, we transform the model into two sub-problems. In sub-problem 1, we determine the energy and DR reserve trading volumes. Here, distributionally robust optimization (DRO) is utilized to manage the severe uncertainties in wind power distribution. In sub-problem 2, based on the outcomes from sub-problem 1, we settle the energy and DR reserve trading prices. To ensure the fairness of benefit allocation, asymmetric Nash bargaining theory is applied to assess each IES's contributions in trading volumes and profit growth. Interval adaptive alternating direction method of multipliers (IA-ADMM) is used to preserve each IES's privacy. Finally, simulation results demonstrate that, compared with independent operation, cooperative trading among MIESs increases profits for all IESs, thereby motivating their participation in cooperative trading.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133703"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224034819","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To tackle the issues of cooperative energy and reserve trading as well as fair cooperative benefit allocation among multiple integrated energy systems (IESs), this paper proposes a two-stage cooperative energy and reserve trading model for multiple integrated energy systems (MIESs). Specifically, at day-ahead stage, MIESs aim to maximize their overall profit through cooperative electricity and heat trading. At real-time stage, MIESs trade demand response (DR) reserve to minimize the overall wind power deviation compensation cost. To reduce the complexity in model solution, we transform the model into two sub-problems. In sub-problem 1, we determine the energy and DR reserve trading volumes. Here, distributionally robust optimization (DRO) is utilized to manage the severe uncertainties in wind power distribution. In sub-problem 2, based on the outcomes from sub-problem 1, we settle the energy and DR reserve trading prices. To ensure the fairness of benefit allocation, asymmetric Nash bargaining theory is applied to assess each IES's contributions in trading volumes and profit growth. Interval adaptive alternating direction method of multipliers (IA-ADMM) is used to preserve each IES's privacy. Finally, simulation results demonstrate that, compared with independent operation, cooperative trading among MIESs increases profits for all IESs, thereby motivating their participation in cooperative trading.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.