Charge capturing effects of boron nitride nanosheets on enhanced triboelectric properties of polyimide nanocomposite films in a conductor-to-dielectric mode
IF 4.1 3区 工程技术Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Charge capturing effects of boron nitride nanosheets on enhanced triboelectric properties of polyimide nanocomposite films in a conductor-to-dielectric mode","authors":"Shinwoo Lee, Jun-Hyeop Lee, Jongho Moon, Ye-Rin Shin, Gyeong-Ig Hwang, Young Gyu Jeong","doi":"10.1016/j.sna.2024.116054","DOIUrl":null,"url":null,"abstract":"<div><div>Dielectric composite materials play a crucial role in the performance of triboelectric nanogenerators (TENGs) by influencing charge storage and transfer capabilities. In this study, we investigate the influence of boron nitride nanosheets (BNNS) on the triboelectric properties of polyimide (PI)-based dielectric nanocomposite films within a TENG setup employing a conductor-to-dielectric configuration and a contact-separation mode. To achieve this, we manufactured PI/BNNS nanocomposite films containing 1–10 wt% BNNS with a thickness of ∼14.67 nm via a solution casting method, followed by thermal imidization. Thermogravimetric characterization revealed that the thermal stability of the nanocomposites improved with increasing BNNS content. Additionally, the triboelectric performance of the PI/BNNS films, used as the negative friction layer, was enhanced due to the electron-trapping capabilities at the BNNS-PI interface. Among the samples, the nanocomposite film containing 5 wt% BNNS exhibited the most significant triboelectric output, generating a voltage of ∼4.0 V and a current of ∼426.4 nA. Moreover, the triboelectric AC output generated by the TENG using PI/BNNS nanocomposite films was successfully rectified into DC signals and subsequently stored in microcapacitors. This capability highlights the significant potential of PI/BNNS nanocomposite films for energy harvesting and storage applications, further supporting their suitability for integration into advanced flexible energy devices.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"380 ","pages":"Article 116054"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724010483","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric composite materials play a crucial role in the performance of triboelectric nanogenerators (TENGs) by influencing charge storage and transfer capabilities. In this study, we investigate the influence of boron nitride nanosheets (BNNS) on the triboelectric properties of polyimide (PI)-based dielectric nanocomposite films within a TENG setup employing a conductor-to-dielectric configuration and a contact-separation mode. To achieve this, we manufactured PI/BNNS nanocomposite films containing 1–10 wt% BNNS with a thickness of ∼14.67 nm via a solution casting method, followed by thermal imidization. Thermogravimetric characterization revealed that the thermal stability of the nanocomposites improved with increasing BNNS content. Additionally, the triboelectric performance of the PI/BNNS films, used as the negative friction layer, was enhanced due to the electron-trapping capabilities at the BNNS-PI interface. Among the samples, the nanocomposite film containing 5 wt% BNNS exhibited the most significant triboelectric output, generating a voltage of ∼4.0 V and a current of ∼426.4 nA. Moreover, the triboelectric AC output generated by the TENG using PI/BNNS nanocomposite films was successfully rectified into DC signals and subsequently stored in microcapacitors. This capability highlights the significant potential of PI/BNNS nanocomposite films for energy harvesting and storage applications, further supporting their suitability for integration into advanced flexible energy devices.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...