Mladen Josijevic, Vladimir Vukasinovic, Dusan Gordic, Vanja Sustersic, Dubravka Zivkovic, Jelena Nikolic
{"title":"A systematic methodology for selecting optimal technology for waste heat utilization in food processing industry","authors":"Mladen Josijevic, Vladimir Vukasinovic, Dusan Gordic, Vanja Sustersic, Dubravka Zivkovic, Jelena Nikolic","doi":"10.1016/j.energy.2024.133751","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing waste heat that is rejected from thermal processes can greatly enhance the industry's energy balance. Identifying potential waste heat sources in the food and beverage processing industry and making estimations for their possible utilization can be an extremely challenging undertaking. To determine waste heat potentials in the food processing industry and to select an optimal technology for its utilization a novel systematic methodology based on the comprehensive energy audit and mathematical optimization has been developed. The developed mixed integer nonlinear programming model incorporates all novel and the most commonly employed technologies to utilize waste heat.</div><div>The developed systematic methodology is tested on a case study, of a milk and dairy production facility. Obtained results have shown that up to 53 % of the available waste heat can be used in the scenario of limited investment costs. Otherwise, in the scenario when investment costs are not set as a limitation, 75 % of waste heat can be used, according to plant demands. Harmonising production processes is necessary to use all the waste heat. The developed systematic methodology can be applied to any food processing industry and other facilities producing waste heat because it presents a universal approach.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133751"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035291","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Utilizing waste heat that is rejected from thermal processes can greatly enhance the industry's energy balance. Identifying potential waste heat sources in the food and beverage processing industry and making estimations for their possible utilization can be an extremely challenging undertaking. To determine waste heat potentials in the food processing industry and to select an optimal technology for its utilization a novel systematic methodology based on the comprehensive energy audit and mathematical optimization has been developed. The developed mixed integer nonlinear programming model incorporates all novel and the most commonly employed technologies to utilize waste heat.
The developed systematic methodology is tested on a case study, of a milk and dairy production facility. Obtained results have shown that up to 53 % of the available waste heat can be used in the scenario of limited investment costs. Otherwise, in the scenario when investment costs are not set as a limitation, 75 % of waste heat can be used, according to plant demands. Harmonising production processes is necessary to use all the waste heat. The developed systematic methodology can be applied to any food processing industry and other facilities producing waste heat because it presents a universal approach.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.