Lanlan Jia , Runting Wang , Yihan Sun , Yuxin Chen , Tingting Zhang , Min Li , Xiaoyu Xie , Sicen Wang
{"title":"Engineered surface design of recognition site-ordered biomimetic sensor for efficient detection of circulating tumor cells","authors":"Lanlan Jia , Runting Wang , Yihan Sun , Yuxin Chen , Tingting Zhang , Min Li , Xiaoyu Xie , Sicen Wang","doi":"10.1016/j.bios.2024.116946","DOIUrl":null,"url":null,"abstract":"<div><div>The oriented assembly of cell membrane coating plays an important role in advancing the application of this strategy in biomedical fields, particularly in detecting circulating tumor cells (CTCs). Unfortunately, there is a formidable challenge in achieving effective membrane orientation during the coating process owing to the asymmetric properties of cell membranes. Herein, magnetic vesicles released by tumor cells were designed to break down these barriers in the same way that microvesicles are actively secreted from cells, which completely inherited the orientation and characteristics of the parent cell membranes, exhibiting a satisfactory self-targeting ability for homologous cells. To cope with the complex application environment, spatially ordered aptamers were integrated into magnetic vesicles and combined with catalytic hairpin assembly (CHA) technology to construct a recognition site-ordered biomimetic sensor for high-performance detection of CTCs. In this strategy, the ordered arrangement of membrane proteins and aptamers markedly improved capture efficiency of traditional biomimetic strategy for CTCs. Additionally, CHA-induced fluorescence and colorimetric analysis ensured the detection accuracy and sensitivity, with a linear range of 0 to 10<sup>4</sup> cells mL<sup>−1</sup> and a low detection limit of 3 cells mL<sup>−1</sup> for fluorometry and 6 cells mL<sup>−1</sup> for colorimetry. Overall, the biomimetic sensor offered broader possibilities for detecting rare CTCs and provided new insight to expand the application of cell membrane biomimetic strategies in biomedicine.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"269 ","pages":"Article 116946"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324009539","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The oriented assembly of cell membrane coating plays an important role in advancing the application of this strategy in biomedical fields, particularly in detecting circulating tumor cells (CTCs). Unfortunately, there is a formidable challenge in achieving effective membrane orientation during the coating process owing to the asymmetric properties of cell membranes. Herein, magnetic vesicles released by tumor cells were designed to break down these barriers in the same way that microvesicles are actively secreted from cells, which completely inherited the orientation and characteristics of the parent cell membranes, exhibiting a satisfactory self-targeting ability for homologous cells. To cope with the complex application environment, spatially ordered aptamers were integrated into magnetic vesicles and combined with catalytic hairpin assembly (CHA) technology to construct a recognition site-ordered biomimetic sensor for high-performance detection of CTCs. In this strategy, the ordered arrangement of membrane proteins and aptamers markedly improved capture efficiency of traditional biomimetic strategy for CTCs. Additionally, CHA-induced fluorescence and colorimetric analysis ensured the detection accuracy and sensitivity, with a linear range of 0 to 104 cells mL−1 and a low detection limit of 3 cells mL−1 for fluorometry and 6 cells mL−1 for colorimetry. Overall, the biomimetic sensor offered broader possibilities for detecting rare CTCs and provided new insight to expand the application of cell membrane biomimetic strategies in biomedicine.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.