Jiazhen Dou , Qiming An , Xiaosong Liu , Yujian Mai , Liyun Zhong , Jianglei Di , Yuwen Qin
{"title":"Enhanced phase recovery in in-line holography with self-supervised complex-valued neural networks","authors":"Jiazhen Dou , Qiming An , Xiaosong Liu , Yujian Mai , Liyun Zhong , Jianglei Di , Yuwen Qin","doi":"10.1016/j.optlaseng.2024.108685","DOIUrl":null,"url":null,"abstract":"<div><div>Wavefront phase recovery through Gabor holography is a well-established inverse problem in quantitative phase imaging. While traditional iterative projection algorithms provide a broadly applicable solution, reconstruction quality remains a concern. Recent advances in deep learning have introduced new possibilities, though issues with generalizability and physical interpretability persist. In this work, we present a self-supervised complex-valued neural network (CVNN) model that integrates an iterative projection framework guided by physical priors. The complex-valued operations in the CVNNs enhance performance by capturing the intrinsic relationship between amplitude and phase. Notably, the complex total variation regularization is introduced to reduce artifacts and improve phase fidelity. Comprehensive analyses demonstrate that our CVNN significantly outperforms traditional iterative algorithms and previous real-valued networks in both simulated and experimental datasets. This work highlights the potential of CVNNs in quantitative phase imaging, emphasizing the benefits of incorporating physical principles into deep learning approaches for improved interpretability and performance.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108685"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006638","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wavefront phase recovery through Gabor holography is a well-established inverse problem in quantitative phase imaging. While traditional iterative projection algorithms provide a broadly applicable solution, reconstruction quality remains a concern. Recent advances in deep learning have introduced new possibilities, though issues with generalizability and physical interpretability persist. In this work, we present a self-supervised complex-valued neural network (CVNN) model that integrates an iterative projection framework guided by physical priors. The complex-valued operations in the CVNNs enhance performance by capturing the intrinsic relationship between amplitude and phase. Notably, the complex total variation regularization is introduced to reduce artifacts and improve phase fidelity. Comprehensive analyses demonstrate that our CVNN significantly outperforms traditional iterative algorithms and previous real-valued networks in both simulated and experimental datasets. This work highlights the potential of CVNNs in quantitative phase imaging, emphasizing the benefits of incorporating physical principles into deep learning approaches for improved interpretability and performance.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques