Green hydrogen, power, and heat generation by polymer electrolyte membrane electrolyzer and fuel cell powered by a hydrokinetic turbine in low-velocity water canals, a 4E assessment
{"title":"Green hydrogen, power, and heat generation by polymer electrolyte membrane electrolyzer and fuel cell powered by a hydrokinetic turbine in low-velocity water canals, a 4E assessment","authors":"Omid Rasooli, Masood Ebrahimi","doi":"10.1016/j.energy.2024.133781","DOIUrl":null,"url":null,"abstract":"<div><div>Thousands of kilometers of man-made low-velocity water transfer canals around the world can be used as a source of renewable energy for electricity and green hydrogen production. These canals have not been well investigated as an energy source, according to the literature. In the present paper, three technologies of Hydrokinetic Turbine (HKT), Polymer Electrolyte Membrane Fuel Cell, and Electrolyzer (PEM-FC/EL) are utilized to produce electricity, green hydrogen, and heat using these canals. Thermodynamic, economic, and environmental models of the cycle are presented, coded in the Engineering Equation Solver software, and finally validated with published research and manufacturers’ data. Two scenarios were examined, first HKT, PEMEL, and PEMFC were used for electricity generation (power-to-hydrogen-to-power, P2X2P) and second only HKT and PEMEL were used for green hydrogen production (power-to-hydrogen, P2X). While both scenarios are economical, the P2X scenario has a smaller payback period (less than 2 years) and a higher net present value. Practical correlations are derived to determine the rate of hydrogen production, power generation, and emission reduction as a function of water velocity. The round-trip energy and exergy efficiency of the system is 46.17 % and 20.78 % and it reduces carbon dioxide by 0.874 tons/year when water velocity is 1.5 m/s.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133781"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036054422403559X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Thousands of kilometers of man-made low-velocity water transfer canals around the world can be used as a source of renewable energy for electricity and green hydrogen production. These canals have not been well investigated as an energy source, according to the literature. In the present paper, three technologies of Hydrokinetic Turbine (HKT), Polymer Electrolyte Membrane Fuel Cell, and Electrolyzer (PEM-FC/EL) are utilized to produce electricity, green hydrogen, and heat using these canals. Thermodynamic, economic, and environmental models of the cycle are presented, coded in the Engineering Equation Solver software, and finally validated with published research and manufacturers’ data. Two scenarios were examined, first HKT, PEMEL, and PEMFC were used for electricity generation (power-to-hydrogen-to-power, P2X2P) and second only HKT and PEMEL were used for green hydrogen production (power-to-hydrogen, P2X). While both scenarios are economical, the P2X scenario has a smaller payback period (less than 2 years) and a higher net present value. Practical correlations are derived to determine the rate of hydrogen production, power generation, and emission reduction as a function of water velocity. The round-trip energy and exergy efficiency of the system is 46.17 % and 20.78 % and it reduces carbon dioxide by 0.874 tons/year when water velocity is 1.5 m/s.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.