Wei Ai , Liang Wang , Xipeng Lin , Yakai Bai , Jingjian Huang , Jiexiang Hu , Haisheng Chen
{"title":"Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization","authors":"Wei Ai , Liang Wang , Xipeng Lin , Yakai Bai , Jingjian Huang , Jiexiang Hu , Haisheng Chen","doi":"10.1016/j.energy.2024.133776","DOIUrl":null,"url":null,"abstract":"<div><div>Pumped thermal-liquid air energy storage (PTLAES) is a novel energy storage technology that combines pumped thermal- and liquid air energy storage and eliminates the need for cold storage. However, existing studies on this system are all based on steady-state assumption, lacking dynamic analysis and optimization to better understand the system's performance under cyclic operation. To fill this gap, the mainbody-linearized cyclic dynamic model of the PTLAES system with packed bed thermal energy storage (TES) was first developed. Then, the dynamic characteristics of the baseline system were investigated. Sensitivity analyses were carried out on TES parameters. Minimal values of levelized cost of storage (LCOS) were observed for all parameters in the range of interest. Subsequently, the TES circuit was optimized, and a triple improvement of efficiency and energy density enhancement, discharge stabilization, and cost reduction was achieved. The optimized system's round-trip efficiency and energy density increased from 61.7 % to 63.1 % and from 141.9 kWh/m³ to 159.2 kWh/m³, and the LCOS decreased from 163.2 $/MWh to 159.4 $/MWh. A power offset ratio lower than 3 % was reached, which is the lowest value ever reported in the literature. This study provides reference for future design and operation of the PTLAES system.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133776"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035540","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Pumped thermal-liquid air energy storage (PTLAES) is a novel energy storage technology that combines pumped thermal- and liquid air energy storage and eliminates the need for cold storage. However, existing studies on this system are all based on steady-state assumption, lacking dynamic analysis and optimization to better understand the system's performance under cyclic operation. To fill this gap, the mainbody-linearized cyclic dynamic model of the PTLAES system with packed bed thermal energy storage (TES) was first developed. Then, the dynamic characteristics of the baseline system were investigated. Sensitivity analyses were carried out on TES parameters. Minimal values of levelized cost of storage (LCOS) were observed for all parameters in the range of interest. Subsequently, the TES circuit was optimized, and a triple improvement of efficiency and energy density enhancement, discharge stabilization, and cost reduction was achieved. The optimized system's round-trip efficiency and energy density increased from 61.7 % to 63.1 % and from 141.9 kWh/m³ to 159.2 kWh/m³, and the LCOS decreased from 163.2 $/MWh to 159.4 $/MWh. A power offset ratio lower than 3 % was reached, which is the lowest value ever reported in the literature. This study provides reference for future design and operation of the PTLAES system.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.