Rodrigo L.M.S. Oliveira , Lucas Barbosa , Thaís C. Pereira , Luísa R.M. Dona , Thiago G. Tabuti , Dayane B. Tada , Eduardo R. Triboni , Luciane D. de Oliveira , Eliandra S. Trichês
{"title":"Multifunctional scaffolds of β-tricalcium phosphate/bioactive glass coated with zinc oxide and copper oxide nanoparticles","authors":"Rodrigo L.M.S. Oliveira , Lucas Barbosa , Thaís C. Pereira , Luísa R.M. Dona , Thiago G. Tabuti , Dayane B. Tada , Eduardo R. Triboni , Luciane D. de Oliveira , Eliandra S. Trichês","doi":"10.1016/j.nwnano.2024.100059","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating nanoparticles into scaffolds with regenerative potential is a promissory strategy to provide them with antimicrobial activity. Bioceramics, such as β-tricalcium phosphate (β-TCP) and bioactive glasses (BGs), stand out among synthetic materials for bone regeneration. In this context, we report the incorporation of zinc oxide (ZnO) and copper oxide/copper nitrate (CuO/Cu<sub>2</sub>H<sub>3</sub>NO<sub>5</sub>) nanoparticles onto the surface of the β-TCP/BG scaffolds. This report addresses the physicochemical characterization of the scaffolds, their antimicrobial activity, and their response to MC3T3-E1 cells. Our findings show that the incorporation of both nanoparticles effectively inhibited <em>S. aureus</em> growth<em>,</em> including its biofilm formation. While the presence of the nanoparticles initially decreased MC3T3-E1 cell viability, cell proliferation improved with prolonged incubation. Overall, the β-TCP/BG_Zn and β-TCP/BG_Cu scaffolds showed an early antimicrobial response, aiding infection eradication, while also supporting cell proliferation over time.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"8 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating nanoparticles into scaffolds with regenerative potential is a promissory strategy to provide them with antimicrobial activity. Bioceramics, such as β-tricalcium phosphate (β-TCP) and bioactive glasses (BGs), stand out among synthetic materials for bone regeneration. In this context, we report the incorporation of zinc oxide (ZnO) and copper oxide/copper nitrate (CuO/Cu2H3NO5) nanoparticles onto the surface of the β-TCP/BG scaffolds. This report addresses the physicochemical characterization of the scaffolds, their antimicrobial activity, and their response to MC3T3-E1 cells. Our findings show that the incorporation of both nanoparticles effectively inhibited S. aureus growth, including its biofilm formation. While the presence of the nanoparticles initially decreased MC3T3-E1 cell viability, cell proliferation improved with prolonged incubation. Overall, the β-TCP/BG_Zn and β-TCP/BG_Cu scaffolds showed an early antimicrobial response, aiding infection eradication, while also supporting cell proliferation over time.