Fault tolerance assessment for hamming graphs based on r-restricted R-structure(substructure) fault pattern

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Yayu Yang, Mingzu Zhang, Jixiang Meng
{"title":"Fault tolerance assessment for hamming graphs based on r-restricted R-structure(substructure) fault pattern","authors":"Yayu Yang,&nbsp;Mingzu Zhang,&nbsp;Jixiang Meng","doi":"10.1016/j.amc.2024.129160","DOIUrl":null,"url":null,"abstract":"<div><div>The interconnection network between the storage system and the multi-core computing system is the bridge for communication of enormous amounts of data access and storage, which is the critical factor in affecting the performance of high-performance computing systems. By enforcing additional restrictions on the definition of <em>R</em>-structure and <em>R</em>-substructure connectivities to satisfy that each remaining vertex has not less than <em>r</em> neighbors, we can dynamically assess the cardinality of the separated component to meet the above conditions under structure faulty, thereby enhancing the evaluation of the fault tolerance and reliability of high-performance computing systems. Let <em>R</em> be a connected subgraph of a connected graph <em>G</em>. The <em>r</em>-restricted <em>R</em>-structure connectivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span> (resp. <em>r</em>-restricted <em>R</em>-substructure connectivity <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span>) of <em>G</em> is the minimum cardinality of a set of subgraphs <span><math><mi>F</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is isomorphic to <em>R</em> (resp. <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a connected subgraph of <em>R</em>) for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></math></span>, and <span><math><mi>G</mi><mo>−</mo><mi>F</mi></math></span> is disconnected with the minimum degree of each component being at least <em>r</em>. Note that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> reduces to <em>r</em>-restricted connectivity <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also called <em>r</em>-good neighbor connectivity). In this paper, we focus on <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> for the <em>L</em>-ary <em>n</em>-dimensional hamming graph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, where <span><math><mi>R</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>}</mo></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>L</mi><mo>≥</mo><mn>3</mn></math></span>, we determine the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor connectivity of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, i.e., <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, and the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor diagnosability of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> under the PMC model and MM* model, i.e., <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>[</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>]</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. And we also drive that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Moreover, we offer an upper bound of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> (resp. <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, and establish that it is sharp for ternary <em>n</em>-cubes <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Specifically, <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129160"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006210","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The interconnection network between the storage system and the multi-core computing system is the bridge for communication of enormous amounts of data access and storage, which is the critical factor in affecting the performance of high-performance computing systems. By enforcing additional restrictions on the definition of R-structure and R-substructure connectivities to satisfy that each remaining vertex has not less than r neighbors, we can dynamically assess the cardinality of the separated component to meet the above conditions under structure faulty, thereby enhancing the evaluation of the fault tolerance and reliability of high-performance computing systems. Let R be a connected subgraph of a connected graph G. The r-restricted R-structure connectivity κr(G;R) (resp. r-restricted R-substructure connectivity κrs(G;R)) of G is the minimum cardinality of a set of subgraphs F={F1,F2,,Fm} such that Fi is isomorphic to R (resp. Fi is a connected subgraph of R) for 1im, and GF is disconnected with the minimum degree of each component being at least r. Note that κr(G;K1) reduces to r-restricted connectivity κr(G) (also called r-good neighbor connectivity). In this paper, we focus on κr(KLn;R) and κrs(KLn;R) for the L-ary n-dimensional hamming graph KLn, where R{K1,K1,1,KL1}. For 0rn3, n3 and L3, we determine the (L1)r-good neighbor connectivity of KLn, i.e., κ(L1)r(KLn)=(L1)(nr)Lr, and the (L1)r-good neighbor diagnosability of KLn under the PMC model and MM* model, i.e., t(L1)r(KLn)=[(L1)(nr)1]Lr1. And we also drive that κ(L1)r(KLn;K1,1)=κ(L1)rs(KLn;K1,1)=12(L1)Lr(nr) for 1rn3, n4. Moreover, we offer an upper bound of κ2(KLn;KL1) (resp. κ2s(KLn;KL1)) for n3, and establish that it is sharp for ternary n-cubes K3n. Specifically, κ2(K3n;K31)=κ2s(K3n;K31)=2(n1) for n3.
基于 R 限制 R 结构(子结构)故障模式的火腿图容错评估
存储系统和多核计算系统之间的互连网络是海量数据访问和存储的通信桥梁,是影响高性能计算系统性能的关键因素。通过对 R-结构和 R-子结构连通性的定义进行额外限制,满足每个剩余顶点的邻居不少于 r 个,我们就可以动态评估分离组件的明细度,以满足结构故障下的上述条件,从而提高对高性能计算系统容错性和可靠性的评估。设 R 是连通图 G 的一个连通子图。G 的 r 限制 R 结构连通性 κr(G;R)(或 r 限制 R 子结构连通性 κrs(G;R))是 Fi 与 R 同构(或 Fi 是连通子图 F={F1,F2,...,Fm})的子图集合的最小卡片度。请注意,κr(G;K1) 简化为 r 限制连通性 κr(G)(也称为 r 好邻居连通性)。在本文中,我们主要研究 Lary n 维汉明图 KLn 的 κr(KLn;R) 和 κrs(KLn;R) ,其中 R∈{K1,K1,1,KL1} 。对于 0≤r≤n-3、n≥3 和 L≥3,我们确定了 KLn 的(L-1)r-好邻居连通性,即 κ(L-1)r(KLn)=(L-1)(n-r)Lr,以及 KLn 在 PMC 模型和 MM* 模型下的(L-1)r-好邻居可诊断性,即 t(L-1)r(KLn)=[(L-1)(n-r)-1]Lr-1。同时,我们还推导出 1≤r≤n-3, n≥4 时,κ(L-1)r(KLn;K1,1)=κ(L-1)rs(KLn;K1,1)=12(L-1)Lr(n-r)。此外,我们还给出了 n≥3 时的 κ2(KLn;KL1) (resp. κ2s(KLn;KL1))上限,并证明它对于三元 n 立方体 K3n 是尖锐的。具体地说,当 n≥3 时,κ2(K3n;K31)=κ2s(K3n;K31)=2(n-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信