{"title":"Fault tolerance assessment for hamming graphs based on r-restricted R-structure(substructure) fault pattern","authors":"Yayu Yang, Mingzu Zhang, Jixiang Meng","doi":"10.1016/j.amc.2024.129160","DOIUrl":null,"url":null,"abstract":"<div><div>The interconnection network between the storage system and the multi-core computing system is the bridge for communication of enormous amounts of data access and storage, which is the critical factor in affecting the performance of high-performance computing systems. By enforcing additional restrictions on the definition of <em>R</em>-structure and <em>R</em>-substructure connectivities to satisfy that each remaining vertex has not less than <em>r</em> neighbors, we can dynamically assess the cardinality of the separated component to meet the above conditions under structure faulty, thereby enhancing the evaluation of the fault tolerance and reliability of high-performance computing systems. Let <em>R</em> be a connected subgraph of a connected graph <em>G</em>. The <em>r</em>-restricted <em>R</em>-structure connectivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span> (resp. <em>r</em>-restricted <em>R</em>-substructure connectivity <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span>) of <em>G</em> is the minimum cardinality of a set of subgraphs <span><math><mi>F</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is isomorphic to <em>R</em> (resp. <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a connected subgraph of <em>R</em>) for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></math></span>, and <span><math><mi>G</mi><mo>−</mo><mi>F</mi></math></span> is disconnected with the minimum degree of each component being at least <em>r</em>. Note that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> reduces to <em>r</em>-restricted connectivity <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also called <em>r</em>-good neighbor connectivity). In this paper, we focus on <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> for the <em>L</em>-ary <em>n</em>-dimensional hamming graph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, where <span><math><mi>R</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>}</mo></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>L</mi><mo>≥</mo><mn>3</mn></math></span>, we determine the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor connectivity of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, i.e., <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, and the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor diagnosability of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> under the PMC model and MM* model, i.e., <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>[</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>]</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. And we also drive that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Moreover, we offer an upper bound of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> (resp. <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, and establish that it is sharp for ternary <em>n</em>-cubes <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Specifically, <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129160"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006210","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The interconnection network between the storage system and the multi-core computing system is the bridge for communication of enormous amounts of data access and storage, which is the critical factor in affecting the performance of high-performance computing systems. By enforcing additional restrictions on the definition of R-structure and R-substructure connectivities to satisfy that each remaining vertex has not less than r neighbors, we can dynamically assess the cardinality of the separated component to meet the above conditions under structure faulty, thereby enhancing the evaluation of the fault tolerance and reliability of high-performance computing systems. Let R be a connected subgraph of a connected graph G. The r-restricted R-structure connectivity (resp. r-restricted R-substructure connectivity ) of G is the minimum cardinality of a set of subgraphs such that is isomorphic to R (resp. is a connected subgraph of R) for , and is disconnected with the minimum degree of each component being at least r. Note that reduces to r-restricted connectivity (also called r-good neighbor connectivity). In this paper, we focus on and for the L-ary n-dimensional hamming graph , where . For , and , we determine the -good neighbor connectivity of , i.e., , and the -good neighbor diagnosability of under the PMC model and MM* model, i.e., . And we also drive that for , . Moreover, we offer an upper bound of (resp. for , and establish that it is sharp for ternary n-cubes . Specifically, for .
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.