Xuzhao Han , Yue Xing , Hailin Zhang , Dongbin Zhang , Lan Hao , Zhenbing Xie , Yuwei Wang
{"title":"Synergistic effect of Na enrichment and F modification on copper Prussian blue analogue nanoparticles for supercapacitors","authors":"Xuzhao Han , Yue Xing , Hailin Zhang , Dongbin Zhang , Lan Hao , Zhenbing Xie , Yuwei Wang","doi":"10.1016/j.surfin.2024.105356","DOIUrl":null,"url":null,"abstract":"<div><div>Prussian blue analogues (PBAs) are promising energy storage materials for supercapacitors. However, high defects and low activity are challenging for high-performance of PBAs. Herein, we propose a series of modified copper Prussian blue analogues (CFPs) with interface rearrangement followed by F modification and Na enrichment. The spectroscopic and electrochemical characteristics demonstrated the synergistic effect of F and Na, revealing the advantages of efficient electronic control and reaction sites synergism, which contributes to the high ion/electron transport and reversibility of CFPs. Benefitting from the reduced defects, optimized conductivity, and boosted electrochemically active surface and exposed active sites resulting from pre-stored Na and regulated F, the supercapacitor performance of CFP-3 has been improved, with a specific capacity of 182 F <em>g</em><sup>−1</sup> at 1 A <em>g</em><sup>−1</sup>, and the rate capability is 82.4 % of the initial specific capacitance at 10 A <em>g</em><sup>−1</sup>, which is 4 times higher than that of unmodified CFP-0. Asymmetric CFP-3//CNT device achieves an energy density of 6.1 Wh kg<sup>−1</sup> at a power density of 1 kW kg<sup>−1</sup>, and an energy density of 5.3 Wh kg<sup>−1</sup> at a power density of 7 kW kg<sup>−1</sup>. After 10,000 cycles, the device still retains 82.4 %, showing good cyclic stability. This work proposes a new approach to improve the energy storage properties by rearranging the interfacial atomic and optimizing the electrochemically active sites, which provides a new guidance for designing high-performance supercapacitor materials.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105356"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015128","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue analogues (PBAs) are promising energy storage materials for supercapacitors. However, high defects and low activity are challenging for high-performance of PBAs. Herein, we propose a series of modified copper Prussian blue analogues (CFPs) with interface rearrangement followed by F modification and Na enrichment. The spectroscopic and electrochemical characteristics demonstrated the synergistic effect of F and Na, revealing the advantages of efficient electronic control and reaction sites synergism, which contributes to the high ion/electron transport and reversibility of CFPs. Benefitting from the reduced defects, optimized conductivity, and boosted electrochemically active surface and exposed active sites resulting from pre-stored Na and regulated F, the supercapacitor performance of CFP-3 has been improved, with a specific capacity of 182 F g−1 at 1 A g−1, and the rate capability is 82.4 % of the initial specific capacitance at 10 A g−1, which is 4 times higher than that of unmodified CFP-0. Asymmetric CFP-3//CNT device achieves an energy density of 6.1 Wh kg−1 at a power density of 1 kW kg−1, and an energy density of 5.3 Wh kg−1 at a power density of 7 kW kg−1. After 10,000 cycles, the device still retains 82.4 %, showing good cyclic stability. This work proposes a new approach to improve the energy storage properties by rearranging the interfacial atomic and optimizing the electrochemically active sites, which provides a new guidance for designing high-performance supercapacitor materials.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)