Jonathan Nietzke , Florian Konert , Konstantin Poka , Benjamin Merz , Oded Sobol , Thomas Böllinghaus
{"title":"Comparison of hydrogen effects on additively manufactured and conventional austenitic steels","authors":"Jonathan Nietzke , Florian Konert , Konstantin Poka , Benjamin Merz , Oded Sobol , Thomas Böllinghaus","doi":"10.1016/j.engfailanal.2024.109042","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen and its derivatives are promising energy carriers for future renewable energy supplies. Austenitic stainless steels, such as AISI 316L, are commonly used in hydrogen transportation systems. While often thought to be resistant to hydrogen embrittlement, studies have shown that 316L is susceptible under certain conditions. As demand for hydrogen applications grows, additive manufacturing (AM) technologies offer design flexibility and customisation benefits. However, data on AM parts behaviour in hydrogen environments is lacking. This study investigates the influence of hydrogen on mechanical properties using slow strain rate testing (SSRT) on conventional AISI 304L, 316L and AM 316L specimens. The results indicate a greater effect of hydrogen on 304L compared to 316L, with AM 316L showing increased susceptibility. However, the ductility of AM 316L remains comparable to conventional 316L due to its initial ductility. The study provides insights into the performance of conventional and AM austenitic stainless steels in gaseous hydrogen environments.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"167 ","pages":"Article 109042"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630724010884","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen and its derivatives are promising energy carriers for future renewable energy supplies. Austenitic stainless steels, such as AISI 316L, are commonly used in hydrogen transportation systems. While often thought to be resistant to hydrogen embrittlement, studies have shown that 316L is susceptible under certain conditions. As demand for hydrogen applications grows, additive manufacturing (AM) technologies offer design flexibility and customisation benefits. However, data on AM parts behaviour in hydrogen environments is lacking. This study investigates the influence of hydrogen on mechanical properties using slow strain rate testing (SSRT) on conventional AISI 304L, 316L and AM 316L specimens. The results indicate a greater effect of hydrogen on 304L compared to 316L, with AM 316L showing increased susceptibility. However, the ductility of AM 316L remains comparable to conventional 316L due to its initial ductility. The study provides insights into the performance of conventional and AM austenitic stainless steels in gaseous hydrogen environments.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.