{"title":"Well-posedness of a class of evolutionary variational–hemivariational inequalities in contact mechanics","authors":"Wei Xu , Weimin Han , Ting Li , Ziping Huang","doi":"10.1016/j.cam.2024.116366","DOIUrl":null,"url":null,"abstract":"<div><div>A class of evolutionary variational–hemivariational inequalities with a convex constraint is studied in this paper. An inequality in this class involves a first-order derivative and a history-dependent operator. Existence and uniqueness of a solution to the inequality is established by the Rothe method, in which the first-order temporal derivative is approximated by backward Euler’s formula, and the history-dependent operator is approximated by a modified left endpoint rule. The proof of the result relies on basic results in functional analysis only, and it does not require the notion of pseudomonotone operators and abstract surjectivity results for such operators, used in other papers on the Rothe method for other evolutionary variational–hemivariational inequalities. Moreover, a Lipschitz continuous dependence conclusion of the solution on the right-hand side is proved. Finally, a new frictional contact problem for viscoelastic material is discussed, which illustrates an application of the theoretical results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116366"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A class of evolutionary variational–hemivariational inequalities with a convex constraint is studied in this paper. An inequality in this class involves a first-order derivative and a history-dependent operator. Existence and uniqueness of a solution to the inequality is established by the Rothe method, in which the first-order temporal derivative is approximated by backward Euler’s formula, and the history-dependent operator is approximated by a modified left endpoint rule. The proof of the result relies on basic results in functional analysis only, and it does not require the notion of pseudomonotone operators and abstract surjectivity results for such operators, used in other papers on the Rothe method for other evolutionary variational–hemivariational inequalities. Moreover, a Lipschitz continuous dependence conclusion of the solution on the right-hand side is proved. Finally, a new frictional contact problem for viscoelastic material is discussed, which illustrates an application of the theoretical results.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.