A flexible class of priors for orthonormal matrices with basis function-specific structure

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Joshua S. North , Mark D. Risser , F. Jay Breidt
{"title":"A flexible class of priors for orthonormal matrices with basis function-specific structure","authors":"Joshua S. North ,&nbsp;Mark D. Risser ,&nbsp;F. Jay Breidt","doi":"10.1016/j.spasta.2024.100866","DOIUrl":null,"url":null,"abstract":"<div><div>Statistical modeling of high-dimensional matrix-valued data motivates the use of a low-rank representation that simultaneously summarizes key characteristics of the data and enables dimension reduction. Low-rank representations commonly factor the original data into the product of orthonormal basis functions and weights, where each basis function represents an independent feature of the data. However, the basis functions in these factorizations are typically computed using algorithmic methods that cannot quantify uncertainty or account for basis function correlation structure <em>a priori</em>. While there exist Bayesian methods that allow for a common correlation structure across basis functions, empirical examples motivate the need for basis function-specific dependence structure. We propose a prior distribution for orthonormal matrices that can explicitly model basis function-specific structure. The prior is used within a general probabilistic model for singular value decomposition to conduct posterior inference on the basis functions while accounting for measurement error and fixed effects. We discuss how the prior specification can be used for various scenarios and demonstrate favorable model properties through synthetic data examples. Finally, we apply our method to two-meter air temperature data from the Pacific Northwest, enhancing our understanding of the Earth system’s internal variability.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"64 ","pages":"Article 100866"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000575","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical modeling of high-dimensional matrix-valued data motivates the use of a low-rank representation that simultaneously summarizes key characteristics of the data and enables dimension reduction. Low-rank representations commonly factor the original data into the product of orthonormal basis functions and weights, where each basis function represents an independent feature of the data. However, the basis functions in these factorizations are typically computed using algorithmic methods that cannot quantify uncertainty or account for basis function correlation structure a priori. While there exist Bayesian methods that allow for a common correlation structure across basis functions, empirical examples motivate the need for basis function-specific dependence structure. We propose a prior distribution for orthonormal matrices that can explicitly model basis function-specific structure. The prior is used within a general probabilistic model for singular value decomposition to conduct posterior inference on the basis functions while accounting for measurement error and fixed effects. We discuss how the prior specification can be used for various scenarios and demonstrate favorable model properties through synthetic data examples. Finally, we apply our method to two-meter air temperature data from the Pacific Northwest, enhancing our understanding of the Earth system’s internal variability.
一类灵活的正交矩阵先验,具有基函数特定结构
高维矩阵值数据的统计建模需要使用低秩表示法,这种表示法既能概括数据的关键特征,又能降低维数。低秩表示通常将原始数据分解为正交基函数和权重的乘积,其中每个基函数代表数据的一个独立特征。然而,这些因式分解中的基函数通常使用算法方法计算,无法量化不确定性,也无法预先考虑基函数的相关结构。虽然有贝叶斯方法允许基函数之间存在共同的相关结构,但经验实例表明需要特定于基函数的依赖结构。我们提出了一种正交矩阵的先验分布,可以明确地模拟特定于基函数的结构。该先验分布可用于奇异值分解的一般概率模型,在考虑测量误差和固定效应的同时,对基函数进行后验推断。我们讨论了如何在各种情况下使用先验规范,并通过合成数据示例展示了有利的模型特性。最后,我们将我们的方法应用于西北太平洋地区的两米气温数据,从而加深我们对地球系统内部变异性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信