Gillian Collins , Tara N. Barwa , Luke Glennon , P. Rupa Kasturi , Carmel B. Breslin
{"title":"Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating","authors":"Gillian Collins , Tara N. Barwa , Luke Glennon , P. Rupa Kasturi , Carmel B. Breslin","doi":"10.1016/j.elecom.2024.107835","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel foam (NF) substrates are widely used to support electrocatalysts, and this is frequently achieved using hydrothermal reactions, where the NF is immersed in the hydrothermal reactor together with the electrocatalyst precursors. However, other reactions including the corrosion of the NF and changes to the pH occur simultaneously, and these can affect the quality of the final electrocatalyst. Herein, a simple approach is devised to minimise these unwanted reactions. Carbon black (CB) was non-covalently functionalised at room temperature using tannic acid to give very stable and good dispersions of fCB in deionised water. Using a simple sonication step, the NF was coated with a uniform layer of the dispersed fCB. This layer served to minimise the corrosion of the underlying NF during the hydrothermal reactions with very good protection observed up to a temperature of 160 °C in deionised water at a pH of 2.0. The corrosion currents of the NF and fCB@NF were estimated at 8.7 µA and 3.9 µA, respectively, at room temperature in this acidic solution. Using a model reaction, the successful nucleation and growth of MnCo<sub>2</sub>O<sub>4</sub> cubes was observed at fCB@NF, but not at the corroding NF.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107835"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001784","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel foam (NF) substrates are widely used to support electrocatalysts, and this is frequently achieved using hydrothermal reactions, where the NF is immersed in the hydrothermal reactor together with the electrocatalyst precursors. However, other reactions including the corrosion of the NF and changes to the pH occur simultaneously, and these can affect the quality of the final electrocatalyst. Herein, a simple approach is devised to minimise these unwanted reactions. Carbon black (CB) was non-covalently functionalised at room temperature using tannic acid to give very stable and good dispersions of fCB in deionised water. Using a simple sonication step, the NF was coated with a uniform layer of the dispersed fCB. This layer served to minimise the corrosion of the underlying NF during the hydrothermal reactions with very good protection observed up to a temperature of 160 °C in deionised water at a pH of 2.0. The corrosion currents of the NF and fCB@NF were estimated at 8.7 µA and 3.9 µA, respectively, at room temperature in this acidic solution. Using a model reaction, the successful nucleation and growth of MnCo2O4 cubes was observed at fCB@NF, but not at the corroding NF.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.