Xiaowen Ji , Deming Li , Feng Li , Zhao-Hui Lu , Guoqing Huang
{"title":"Converting dependence of extreme wind pressure coefficients across different epochs","authors":"Xiaowen Ji , Deming Li , Feng Li , Zhao-Hui Lu , Guoqing Huang","doi":"10.1016/j.jweia.2024.105947","DOIUrl":null,"url":null,"abstract":"<div><div>The dependence of extreme wind pressure coefficients has gained attention due to its potential impact on determining design wind loads and assessing wind-induced damages of cladding components. However, experimental data with short durations often fail to provide a sufficient number of extreme samples of pressure coefficients over specified epochs (e.g., 10 min or 1 h). Consequently, estimating the dependence of extreme pressure coefficients remains a challenge. To address this issue, Spearman's <em>ρ</em> is employed to quantify the dependence of extreme pressure coefficients due to their non-Gaussianity nature, based on which a theoretical formula converting the dependence of extreme pressure coefficients across different epochs is deduced. Furthermore, a simplified conversion formula, which offers accuracy equivalent to the theoretical one while enhancing efficiency, is provided. A dataset of pressure coefficients with a very long duration is employed for formula examination. The conversion formula demonstrates good agreement with the observed trend of dependence between extreme pressure coefficients over different epochs. Error analysis is also conducted to investigate the uncertainty of estimates from data. Additionally, the efficacy of the conversion formula deduced based on Pearson's linear correlation coefficient is discussed.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"255 ","pages":"Article 105947"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524003106","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The dependence of extreme wind pressure coefficients has gained attention due to its potential impact on determining design wind loads and assessing wind-induced damages of cladding components. However, experimental data with short durations often fail to provide a sufficient number of extreme samples of pressure coefficients over specified epochs (e.g., 10 min or 1 h). Consequently, estimating the dependence of extreme pressure coefficients remains a challenge. To address this issue, Spearman's ρ is employed to quantify the dependence of extreme pressure coefficients due to their non-Gaussianity nature, based on which a theoretical formula converting the dependence of extreme pressure coefficients across different epochs is deduced. Furthermore, a simplified conversion formula, which offers accuracy equivalent to the theoretical one while enhancing efficiency, is provided. A dataset of pressure coefficients with a very long duration is employed for formula examination. The conversion formula demonstrates good agreement with the observed trend of dependence between extreme pressure coefficients over different epochs. Error analysis is also conducted to investigate the uncertainty of estimates from data. Additionally, the efficacy of the conversion formula deduced based on Pearson's linear correlation coefficient is discussed.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.