Fuzzy TOPSIS optimization of MHD trihybrid nanofluid in heat pipes

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Jawad Raza , Liaquat Ali Lund , Hamna Ashraf , Zahir Shah , Mansoor H. Alshehri , Narcisa Vrinceanu
{"title":"Fuzzy TOPSIS optimization of MHD trihybrid nanofluid in heat pipes","authors":"Jawad Raza ,&nbsp;Liaquat Ali Lund ,&nbsp;Hamna Ashraf ,&nbsp;Zahir Shah ,&nbsp;Mansoor H. Alshehri ,&nbsp;Narcisa Vrinceanu","doi":"10.1016/j.csite.2024.105493","DOIUrl":null,"url":null,"abstract":"<div><div>Heat pipes have the potential to benefit from nanofluid flow between coaxial cylinders. Heat is effectively transferred from one place to another by means of heat pipes. Heat pipes can be used for electronics cooling, spacecraft thermal management, and heat recovery systems by adding nanofluids, which enhances the heat pipe's thermal conductivity and heat transfer capability. This work aims to discover an approximate solution for the flow of a trihybrid nanofluid (THNF) consisting of graphene, copper, and silver between two coaxial cylinders in magneto-hydrodynamics, taking into account the broad variety of applications. The nanomaterial is tested in a system with a fixed inner cylinder and a rotating outer cylinder. It contains graphene, copper, silver, and kerosene oil as the base fluid. For examining the flow characteristics, magnetic field is applied along radial direction of the cylinder, while inner cylinder is fixed, and outer cylinder is rotating. Moreover, temperature of the outer cylinder is higher than the lower cylinder. The objective of this study is to develop a mathematical model of the problem and solve the governing equation numerically using the MATLAB built-in routine called bvp4c. Additionally, we identify the most effective physical parameter to optimize the heat transfer rate using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Using a variety of factors, we calculate fluid velocity, skin friction, temperature, and Nusselt number graphically. According to the study, higher Brinkman numbers <span><math><mrow><mo>(</mo><mrow><mi>B</mi><mi>r</mi></mrow><mo>)</mo></mrow></math></span> and magnetic parameter <span><math><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> characteristics lead to higher temperatures. Furthermore, Fuzzy TOPSIS shows that alternative A11 <span><math><mrow><mo>(</mo><mrow><mi>ϕ</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.9</mn><mo>,</mo><mn>1.0</mn><mo>,</mo><mn>1.0</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>M</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.5</mn><mo>,</mo><mn>0.7</mn><mo>,</mo><mn>0.9</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>B</mi><mi>r</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.9</mn><mo>,</mo><mn>1.0</mn><mo>,</mo><mn>1.0</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> has the maximum heat transfer rate, while another A8 <span><math><mrow><mo>(</mo><mrow><mi>ϕ</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0.1</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>M</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0.1</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>B</mi><mi>r</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0.1</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> has the lowest.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105493"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24015247","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Heat pipes have the potential to benefit from nanofluid flow between coaxial cylinders. Heat is effectively transferred from one place to another by means of heat pipes. Heat pipes can be used for electronics cooling, spacecraft thermal management, and heat recovery systems by adding nanofluids, which enhances the heat pipe's thermal conductivity and heat transfer capability. This work aims to discover an approximate solution for the flow of a trihybrid nanofluid (THNF) consisting of graphene, copper, and silver between two coaxial cylinders in magneto-hydrodynamics, taking into account the broad variety of applications. The nanomaterial is tested in a system with a fixed inner cylinder and a rotating outer cylinder. It contains graphene, copper, silver, and kerosene oil as the base fluid. For examining the flow characteristics, magnetic field is applied along radial direction of the cylinder, while inner cylinder is fixed, and outer cylinder is rotating. Moreover, temperature of the outer cylinder is higher than the lower cylinder. The objective of this study is to develop a mathematical model of the problem and solve the governing equation numerically using the MATLAB built-in routine called bvp4c. Additionally, we identify the most effective physical parameter to optimize the heat transfer rate using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Using a variety of factors, we calculate fluid velocity, skin friction, temperature, and Nusselt number graphically. According to the study, higher Brinkman numbers (Br) and magnetic parameter (M) characteristics lead to higher temperatures. Furthermore, Fuzzy TOPSIS shows that alternative A11 (ϕ=(0.9,1.0,1.0),M=(0.5,0.7,0.9),Br=(0.9,1.0,1.0)) has the maximum heat transfer rate, while another A8 (ϕ=(0,0,0.1),M=(0,0,0.1),Br=(0,0,0.1)) has the lowest.
热管中 MHD 三混合纳米流体的模糊 TOPSIS 优化
热管有可能从同轴圆柱体之间的纳米流体流动中受益。通过热管可以有效地将热量从一个地方传递到另一个地方。通过添加纳米流体,增强热管的导热性和传热能力,热管可用于电子设备冷却、航天器热管理和热回收系统。考虑到应用的广泛性,本研究旨在探索由石墨烯、铜和银组成的三混合纳米流体(THNF)在磁流体力学中在两个同轴圆柱体之间流动的近似解。该纳米材料在一个具有固定内筒和旋转外筒的系统中进行测试。该系统包含石墨烯、铜、银和煤油作为基础流体。为了检测流动特性,沿圆柱体的径向施加磁场,同时内圆柱体固定,外圆柱体旋转。此外,外圆筒的温度高于下圆筒。本研究的目的是建立问题的数学模型,并使用名为 bvp4c 的 MATLAB 内置例程对控制方程进行数值求解。此外,我们还利用与理想解相似度排序模糊技术(TOPSIS)确定了优化传热率的最有效物理参数。利用各种因素,我们以图形方式计算了流体速度、皮肤摩擦、温度和努塞尔特数。研究结果表明,布林克曼数(Br)和磁参数(M)越高,温度越高。此外,模糊 TOPSIS 显示,备选方案 A11(j=(0.9,1.0,1.0),M=(0.5,0.7,0.9),Br=(0.9,1.0,1.0))的传热率最高,而备选方案 A8(j=(0,0,0.1),M=(0,0,0.1),Br=(0,0,0.1))的传热率最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信