Transcriptome dynamics in mouse amygdala under acute and chronic stress revealed by thiol-labeled RNA sequencing

IF 4.3 2区 医学 Q1 NEUROSCIENCES
Dan Zhao , Lu Zhang , Yang Yang
{"title":"Transcriptome dynamics in mouse amygdala under acute and chronic stress revealed by thiol-labeled RNA sequencing","authors":"Dan Zhao ,&nbsp;Lu Zhang ,&nbsp;Yang Yang","doi":"10.1016/j.ynstr.2024.100688","DOIUrl":null,"url":null,"abstract":"<div><div>Both acute and chronic stress have significant impact on brain functions. The amygdala is essential in mediating stress responses, but how its transcriptomic dynamics change under stress remains elusive. To overcome the difficulties in detecting subtle stress-induced changes by evaluating total RNA using classic RNA sequencing, we conducted thiol-labeled RNA sequencing (SLAM-seq). We injected 4-thiouridine (4sU) into mouse amygdala followed by SLAM-seq to detect nascent mRNA induced by acute and chronic restraint stress, and found that SLAM-seq could label actively transcribed genes in the major neuronal and glial subtypes. Using SLAM-seq, we found that chronic stress led to higher turnover of a group of genes associated with myelination, and this finding is confirmed by immunostaining which showed increased myelination in the chronically stressed amygdala. Additionally, genes detected by SLAM-seq and RNA-seq only partially overlapped, suggesting that SLAM-seq and RNA-seq are complementary in identifying stress-responsive genes. By applying SLAM-seq <em>in vivo</em>, we obtained a rich dataset of genes with higher turnover in the amygdala under stress.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"33 ","pages":"Article 100688"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000845","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Both acute and chronic stress have significant impact on brain functions. The amygdala is essential in mediating stress responses, but how its transcriptomic dynamics change under stress remains elusive. To overcome the difficulties in detecting subtle stress-induced changes by evaluating total RNA using classic RNA sequencing, we conducted thiol-labeled RNA sequencing (SLAM-seq). We injected 4-thiouridine (4sU) into mouse amygdala followed by SLAM-seq to detect nascent mRNA induced by acute and chronic restraint stress, and found that SLAM-seq could label actively transcribed genes in the major neuronal and glial subtypes. Using SLAM-seq, we found that chronic stress led to higher turnover of a group of genes associated with myelination, and this finding is confirmed by immunostaining which showed increased myelination in the chronically stressed amygdala. Additionally, genes detected by SLAM-seq and RNA-seq only partially overlapped, suggesting that SLAM-seq and RNA-seq are complementary in identifying stress-responsive genes. By applying SLAM-seq in vivo, we obtained a rich dataset of genes with higher turnover in the amygdala under stress.
硫醇标记的 RNA 测序揭示急性和慢性应激下小鼠杏仁核转录组的动态变化
急性和慢性压力都会对大脑功能产生重大影响。杏仁核是介导应激反应的重要器官,但其转录组动态如何在应激下发生变化仍是一个未知数。为了克服用传统的RNA测序方法评估总RNA来检测应激诱导的微妙变化的困难,我们进行了硫醇标记RNA测序(SLAM-seq)。我们向小鼠杏仁核注射了4-硫代硫甙(4sU),然后用SLAM-seq检测急性和慢性束缚应激诱导的新生mRNA,结果发现SLAM-seq可以标记主要神经元和神经胶质亚型中的活跃转录基因。通过使用 SLAM-seq,我们发现慢性应激导致一组与髓鞘化相关的基因更替率升高,这一发现得到了免疫染色的证实,免疫染色显示慢性应激杏仁核中的髓鞘化增加。此外,SLAM-seq和RNA-seq检测到的基因只有部分重叠,这表明SLAM-seq和RNA-seq在鉴定应激反应基因方面是互补的。通过在体内应用 SLAM-seq,我们获得了在应激状态下杏仁核中周转率较高的基因的丰富数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Stress
Neurobiology of Stress Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
9.40
自引率
4.00%
发文量
74
审稿时长
48 days
期刊介绍: Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal. Basic, translational and clinical research on the following topics as they relate to stress will be covered: Molecular substrates and cell signaling, Genetics and epigenetics, Stress circuitry, Structural and physiological plasticity, Developmental Aspects, Laboratory models of stress, Neuroinflammation and pathology, Memory and Cognition, Motivational Processes, Fear and Anxiety, Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse), Neuropsychopharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信