Chengli Liu , Yefei Bai , Thorne Lay , Ping He , Yangmao Wen , Xiaoran Wei , Neng Xiong , Xiong Xiong
{"title":"Shallow crustal rupture in a major MW 7.5 earthquake above a deep crustal seismic swarm along the Noto Peninsula in western Japan","authors":"Chengli Liu , Yefei Bai , Thorne Lay , Ping He , Yangmao Wen , Xiaoran Wei , Neng Xiong , Xiong Xiong","doi":"10.1016/j.epsl.2024.119107","DOIUrl":null,"url":null,"abstract":"<div><div>A damaging <em>M<sub>W</sub></em> 7.5 earthquake struck the western coast of Japan along the Noto Peninsula on January 1, 2024. The initiation of large shallow earthquakes along the Noto Peninsula, particularly above deeper long-duration patchy seismic swarms, presents an unusual seismic phenomenon that warrants in-depth investigation of their interactions. The 2024 earthquake nucleated with an initial low average rupture velocity of 0.5–1.0 km s<sup>-1</sup> near the up-dip end of a long-lasting seismic swarm that commenced in November 2020. Analysis of dense seismic, geodetic, and tsunami observations provides good resolution of large shallow slip in the crust below the peninsula and extending offshore to the northeast, revealing a heterogeneous slip distribution characterized by bilateral two-stage rupture expansion during the faulting. Up to 8 m of slip occurred in several patches along ∼150 km of the southeastward-dipping thrust fault, which extends to near the seafloor along the northwest side of the peninsula. Up to 5 m of uplift occurred along the peninsula's northwestern coast. Up-dip fluid migration appears to have weakened the shallow fault prior to failure and influenced the initial slow rupture expansion, highlighting the need to monitor the evolution of worldwide swarms.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119107"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005399","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A damaging MW 7.5 earthquake struck the western coast of Japan along the Noto Peninsula on January 1, 2024. The initiation of large shallow earthquakes along the Noto Peninsula, particularly above deeper long-duration patchy seismic swarms, presents an unusual seismic phenomenon that warrants in-depth investigation of their interactions. The 2024 earthquake nucleated with an initial low average rupture velocity of 0.5–1.0 km s-1 near the up-dip end of a long-lasting seismic swarm that commenced in November 2020. Analysis of dense seismic, geodetic, and tsunami observations provides good resolution of large shallow slip in the crust below the peninsula and extending offshore to the northeast, revealing a heterogeneous slip distribution characterized by bilateral two-stage rupture expansion during the faulting. Up to 8 m of slip occurred in several patches along ∼150 km of the southeastward-dipping thrust fault, which extends to near the seafloor along the northwest side of the peninsula. Up to 5 m of uplift occurred along the peninsula's northwestern coast. Up-dip fluid migration appears to have weakened the shallow fault prior to failure and influenced the initial slow rupture expansion, highlighting the need to monitor the evolution of worldwide swarms.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.