Jasdeep Singh, Ankit Srivastava, Michael J. Demkowicz
{"title":"Deformation and delamination of dynamically bulging bilayered films","authors":"Jasdeep Singh, Ankit Srivastava, Michael J. Demkowicz","doi":"10.1016/j.mechmat.2024.105192","DOIUrl":null,"url":null,"abstract":"<div><div>We employ finite element simulations to study the dynamic bulging of films under shock tube conditions and compare these responses with quasi-static bulging. Both scenarios subject the film to time-varying pressure. Two film types are considered: uniform material films and bilayers with a relatively soft interior layer and a hard exterior layer. The interface between the materials in the bilayer cases is modeled as a cohesive zone that follows a bilinear normal traction-separation cohesive law. Additionally, bilayer films with preexisting cracks in the interior layer are analyzed. Parametric studies are also conducted to explore the effects of loading rate and specimen size. The mechanical response of all materials is assumed to be strain-rate independent, focusing solely on the inertial effects in the response of the films under dynamic loading, and the absence of such effects under quasi-static loading. The results indicate that quasi-static bulging exhibits a predictable plate bending like deformation. In contrast, depending on the loading rate and specimen size, dynamic bulging can give rise to elastic waves, and a sequence of deformation processes including initial uniform acceleration, followed by bending-like deformation, and finally through-thickness biaxial stretching. Dynamic loading also leads to larger bulge formation and greater deformation than quasi-static loading. A key finding is the role of preexisting cracks in driving delamination under dynamic loading, which is absent in quasi-static loading. This work enhances our understanding of dynamic bulging and motivates further research on characterizing delamination in layered films using dynamic bulge tests.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"200 ","pages":"Article 105192"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624002849","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We employ finite element simulations to study the dynamic bulging of films under shock tube conditions and compare these responses with quasi-static bulging. Both scenarios subject the film to time-varying pressure. Two film types are considered: uniform material films and bilayers with a relatively soft interior layer and a hard exterior layer. The interface between the materials in the bilayer cases is modeled as a cohesive zone that follows a bilinear normal traction-separation cohesive law. Additionally, bilayer films with preexisting cracks in the interior layer are analyzed. Parametric studies are also conducted to explore the effects of loading rate and specimen size. The mechanical response of all materials is assumed to be strain-rate independent, focusing solely on the inertial effects in the response of the films under dynamic loading, and the absence of such effects under quasi-static loading. The results indicate that quasi-static bulging exhibits a predictable plate bending like deformation. In contrast, depending on the loading rate and specimen size, dynamic bulging can give rise to elastic waves, and a sequence of deformation processes including initial uniform acceleration, followed by bending-like deformation, and finally through-thickness biaxial stretching. Dynamic loading also leads to larger bulge formation and greater deformation than quasi-static loading. A key finding is the role of preexisting cracks in driving delamination under dynamic loading, which is absent in quasi-static loading. This work enhances our understanding of dynamic bulging and motivates further research on characterizing delamination in layered films using dynamic bulge tests.
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.