Hydrogen bond-mediated assembly of homo-charged COF nanosheets and polyelectrolytes towards robust Li+/Mg2+ separation membrane

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Bo Hu , Hao Deng , Yu Zheng , Zixuan Zhang , Tao Wu , Zaichuang Liu , Beixi Jia , Hanqi Lin , Runnan Zhang , Zhongyi Jiang
{"title":"Hydrogen bond-mediated assembly of homo-charged COF nanosheets and polyelectrolytes towards robust Li+/Mg2+ separation membrane","authors":"Bo Hu ,&nbsp;Hao Deng ,&nbsp;Yu Zheng ,&nbsp;Zixuan Zhang ,&nbsp;Tao Wu ,&nbsp;Zaichuang Liu ,&nbsp;Beixi Jia ,&nbsp;Hanqi Lin ,&nbsp;Runnan Zhang ,&nbsp;Zhongyi Jiang","doi":"10.1016/j.memsci.2024.123489","DOIUrl":null,"url":null,"abstract":"<div><div>Developing membranes with ordered channels and high positive charge density is crucial for Li<sup>+</sup>/Mg<sup>2+</sup> separation. Ionic covalent organic framework (COF) membranes are promising candidates, yet they face challenges like pore size mismatch with ions and the liable structural defects. Herein, we proposed a hydrogen bond-mediated strategy to assemble membranes from homo-charged COF nanosheets and polyelectrolytes. Compared with the quaternary amines in poly (diallyl dimethyl ammonium chloride), the abundant primary and secondary amines in polyethyleneimine facilitate multiple hydrogen bonding interactions with COF nanosheets. These interactions effectively overcome the electrostatic repulsion between positive charges, endowing membrane with structural robustness. Furthermore, the intercalation of polyelectrolytes eliminates the structural defects, reduces the membrane pore size, and enhances the Donnan effect. The optimized COF membrane exhibited a pure water flux of 10.2 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, separation factor of up to 30 at high Mg<sup>2+</sup>/Li<sup>+</sup> mass ratio of 100, and excellent stability under various operating conditions. Strikingly, our strategy facilitates the fabrication of membranes in large area (&gt;450 cm<sup>2</sup>) while maintaining consistent separation performance, showcasing substantial potential of scalable manufacturing.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123489"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010834","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing membranes with ordered channels and high positive charge density is crucial for Li+/Mg2+ separation. Ionic covalent organic framework (COF) membranes are promising candidates, yet they face challenges like pore size mismatch with ions and the liable structural defects. Herein, we proposed a hydrogen bond-mediated strategy to assemble membranes from homo-charged COF nanosheets and polyelectrolytes. Compared with the quaternary amines in poly (diallyl dimethyl ammonium chloride), the abundant primary and secondary amines in polyethyleneimine facilitate multiple hydrogen bonding interactions with COF nanosheets. These interactions effectively overcome the electrostatic repulsion between positive charges, endowing membrane with structural robustness. Furthermore, the intercalation of polyelectrolytes eliminates the structural defects, reduces the membrane pore size, and enhances the Donnan effect. The optimized COF membrane exhibited a pure water flux of 10.2 L m−2 h−1 bar−1, separation factor of up to 30 at high Mg2+/Li+ mass ratio of 100, and excellent stability under various operating conditions. Strikingly, our strategy facilitates the fabrication of membranes in large area (>450 cm2) while maintaining consistent separation performance, showcasing substantial potential of scalable manufacturing.

Abstract Image

氢键介导的同电荷 COF 纳米片和聚电解质组装,实现稳健的 Li+/Mg2+ 分离膜
开发具有有序通道和高正电荷密度的膜对 Li+/Mg2+ 分离至关重要。离子共价有机框架(COF)膜是很有前景的候选材料,但它们面临着孔径与离子不匹配以及容易产生结构缺陷等挑战。在此,我们提出了一种氢键介导的策略,利用同电荷 COF 纳米片和聚电解质组装膜。与聚(二烯丙基二甲基氯化铵)中的季胺相比,聚乙烯亚胺中丰富的伯胺和仲胺可促进与 COF 纳米片的多重氢键相互作用。这些相互作用有效地克服了正电荷之间的静电排斥,使膜具有结构坚固性。此外,聚电解质的插层消除了结构缺陷,减小了膜孔径,增强了唐南效应。优化后的 COF 膜显示出 10.2 L m-2 h-1 bar-1 的纯水通量,在 Mg2+/Li+ 质量比为 100 的高条件下分离因子高达 30,并且在各种操作条件下都具有极佳的稳定性。引人注目的是,我们的策略有助于制造大面积(450 cm2)膜,同时保持稳定的分离性能,展示了可扩展制造的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信