Repeated-root constacyclic codes of length kslmpn over finite fields

IF 1.2 3区 数学 Q1 MATHEMATICS
Qi Zhang , Weiqiong Wang , Shuyu Luo , Yue Li
{"title":"Repeated-root constacyclic codes of length kslmpn over finite fields","authors":"Qi Zhang ,&nbsp;Weiqiong Wang ,&nbsp;Shuyu Luo ,&nbsp;Yue Li","doi":"10.1016/j.ffa.2024.102542","DOIUrl":null,"url":null,"abstract":"<div><div>For different odd primes <em>k</em>, <em>l</em>, <em>p</em>, and positive integers <em>s</em>, <em>m</em>, <em>n</em>, the polynomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msup><mo>−</mo><mi>λ</mi></math></span> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>x</mi><mo>]</mo></mrow></math></span> is explicitly factorized, where <em>p</em> is the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, <span><math><mi>λ</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. All repeated-root constacyclic codes and their dual codes of length <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are characterized. In addition, the characterization and enumeration of all linear complementary dual (LCD) cyclic and negacyclic codes of length <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are obtained.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102542"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001813","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For different odd primes k, l, p, and positive integers s, m, n, the polynomial xkslmpnλ in Fq[x] is explicitly factorized, where p is the characteristic of Fq, λFq. All repeated-root constacyclic codes and their dual codes of length kslmpn over Fq are characterized. In addition, the characterization and enumeration of all linear complementary dual (LCD) cyclic and negacyclic codes of length kslmpn over Fq are obtained.
有限域上长度为 kslmpn 的重复根常环码
对于不同的奇数素数 k、l、p 和正整数 s、m、n,Fq[x] 中的多项式 xkslmpn-λ 被显式因式分解,其中 p 是 Fq 的特征,λ∈Fq⁎。表征了 Fq 上长度为 kslmpn 的所有重复根常环码及其对偶码。此外,还得到了 Fq 上所有长度为 kslmpn 的线性互补对偶(LCD)循环码和负循环码的特征和枚举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信