High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Qihang Li , Liyi An , Chuning Shang , Jianqiang Meng
{"title":"High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer","authors":"Qihang Li ,&nbsp;Liyi An ,&nbsp;Chuning Shang ,&nbsp;Jianqiang Meng","doi":"10.1016/j.memsci.2024.123507","DOIUrl":null,"url":null,"abstract":"<div><div>Current polyamide thin-film composite (TFC) membranes for seawater reverse osmosis (SWRO) require enhanced rejection capabilities for high salinity application and the removal of neutral micropollutants. In this study, we developed high rejection SWRO membranes utilizing <em>m</em>-phenylenediamine (MPD) as the water phase monomer, trimethyl chloride (TMC) as the organic phase monomer, and naphthalene-1,3,6-trisulfonyl chloride (NTSC) as a molecular plug. Xylene was added to the heated organic phase to compensate for the flux loss due to the tightened functional layer. The membranes were characterized in detail with ATR-FTIR, XPS, SEM, AFM, WCA, surface zeta potential, Positron annihilation spectroscopy (PALS), and quartz crystal microbalance (QCM). Our results indicate that adding xylene into the organic phase enhances flux, while heating the organic phase to 90<sup>o</sup>C benefits both flux and rejection. Furthermore, the addition of NTSC further improves the rejection. The variation in membrane flux correlates with the functional layer morphology under SEM and the membrane rejection properties correspond well with the functional layer free volume results by PALS. Due to the low reactivity of sulfonyl chloride, NTSC can only form oligomers embedding into the polyamide network, resulting in significantly higher rejection of sodium chloride (99.90 %) and boron (92.39 %) with a flux of 37.85 L m<sup>−2</sup> h<sup>−1</sup> under the conditions of 35000 ppm NaCl and 5 ppm boric acid at 800 psi. This work demonstrates that high rejection SWRO membranes can be successfully achieved by an in situ “swelling and filling” method.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123507"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824011013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current polyamide thin-film composite (TFC) membranes for seawater reverse osmosis (SWRO) require enhanced rejection capabilities for high salinity application and the removal of neutral micropollutants. In this study, we developed high rejection SWRO membranes utilizing m-phenylenediamine (MPD) as the water phase monomer, trimethyl chloride (TMC) as the organic phase monomer, and naphthalene-1,3,6-trisulfonyl chloride (NTSC) as a molecular plug. Xylene was added to the heated organic phase to compensate for the flux loss due to the tightened functional layer. The membranes were characterized in detail with ATR-FTIR, XPS, SEM, AFM, WCA, surface zeta potential, Positron annihilation spectroscopy (PALS), and quartz crystal microbalance (QCM). Our results indicate that adding xylene into the organic phase enhances flux, while heating the organic phase to 90oC benefits both flux and rejection. Furthermore, the addition of NTSC further improves the rejection. The variation in membrane flux correlates with the functional layer morphology under SEM and the membrane rejection properties correspond well with the functional layer free volume results by PALS. Due to the low reactivity of sulfonyl chloride, NTSC can only form oligomers embedding into the polyamide network, resulting in significantly higher rejection of sodium chloride (99.90 %) and boron (92.39 %) with a flux of 37.85 L m−2 h−1 under the conditions of 35000 ppm NaCl and 5 ppm boric acid at 800 psi. This work demonstrates that high rejection SWRO membranes can be successfully achieved by an in situ “swelling and filling” method.

Abstract Image

具有聚酰胺-聚磺酰胺互穿功能层的高排斥海水反渗透 TFC 膜
目前用于海水反渗透(SWRO)的聚酰胺薄膜复合(TFC)膜需要增强高盐度应用和去除中性微污染物的排斥能力。在这项研究中,我们利用间苯二胺(MPD)作为水相单体,三甲基氯化物(TMC)作为有机相单体,萘-1,3,6-三磺酰氯(NTSC)作为分子栓,开发出了高排斥率的 SWRO 膜。在加热的有机相中加入二甲苯,以补偿由于功能层收紧而造成的流量损失。利用 ATR-FTIR、XPS、SEM、AFM、WCA、表面 zeta 电位、正电子湮灭光谱 (PALS) 和石英晶体微天平 (QCM) 对膜进行了详细表征。我们的研究结果表明,在有机相中加入二甲苯可提高通量,而将有机相加热到 90 摄氏度则有利于通量和排斥。此外,添加 NTSC 还能进一步提高排斥效果。膜通量的变化与 SEM 扫描仪下的功能层形态相关,而膜的排斥特性与 PALS 功能层自由体积的结果非常吻合。由于磺酰氯的反应活性较低,NTSC 只能形成低聚物嵌入聚酰胺网络,因此在 35000 ppm NaCl 和 5 ppm 硼酸、800 psi 的条件下,氯化钠(99.90%)和硼(92.39%)的截留率显著提高,通量达到 37.85 L m-2 h-1。这项工作表明,通过原位 "膨胀和填充 "方法,可以成功实现高排斥率的 SWRO 膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信