{"title":"Partial difference sets with Denniston parameters in elementary abelian p-groups","authors":"Jingjun Bao , Qing Xiang , Meng Zhao","doi":"10.1016/j.ffa.2024.102539","DOIUrl":null,"url":null,"abstract":"<div><div>Denniston <span><span>[12]</span></span> constructed partial difference sets (PDS) with parameters <span><math><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup><mo>,</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> in elementary abelian groups of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></math></span> for all <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>m</mi></math></span>. These PDS arise from maximal arcs in the Desarguesian projective planes PG<span><math><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>. Davis et al. <span><span>[10]</span></span> and also De Winter <span><span>[13]</span></span> presented constructions of PDS with Denniston parameters <span><math><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup><mo>,</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> in elementary abelian groups of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></math></span> for all <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>r</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, where <em>p</em> is an odd prime. The constructions in <span><span>[10]</span></span>, <span><span>[13]</span></span> are particularly intriguing, as it was shown by Ball, Blokhuis, and Mazzocca <span><span>[1]</span></span> that no nontrivial maximal arcs in PG<span><math><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> exist for any odd prime power <em>q</em>. In this paper, we show that PDS with Denniston parameters <span><math><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup><mo>,</mo><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> exist in elementary abelian groups of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></math></span> for all <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>m</mi></math></span>, where <em>q</em> is an arbitrary prime power.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102539"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001783","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Denniston [12] constructed partial difference sets (PDS) with parameters in elementary abelian groups of order for all and . These PDS arise from maximal arcs in the Desarguesian projective planes PG. Davis et al. [10] and also De Winter [13] presented constructions of PDS with Denniston parameters in elementary abelian groups of order for all and , where p is an odd prime. The constructions in [10], [13] are particularly intriguing, as it was shown by Ball, Blokhuis, and Mazzocca [1] that no nontrivial maximal arcs in PG exist for any odd prime power q. In this paper, we show that PDS with Denniston parameters exist in elementary abelian groups of order for all and , where q is an arbitrary prime power.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.