Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Song Lei , Sisi Wen , Jian Xue , Ao Wang , Jiaqi Li , Zhongyuan Liu , Longgui Zhang , Yifeng Li , Haihui Wang
{"title":"Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures","authors":"Song Lei ,&nbsp;Sisi Wen ,&nbsp;Jian Xue ,&nbsp;Ao Wang ,&nbsp;Jiaqi Li ,&nbsp;Zhongyuan Liu ,&nbsp;Longgui Zhang ,&nbsp;Yifeng Li ,&nbsp;Haihui Wang","doi":"10.1016/j.memsci.2024.123500","DOIUrl":null,"url":null,"abstract":"<div><div>Insufficient structural stability and limited lattice oxygen mobility at low temperatures seriously limit the application of perovskite-type oxides in mixed ionic-electronic conducting oxygen-permeable membranes. Engineering the crystal structure and oxygen vacancies by ion doping is an effective strategy to enhance both structural stability and lattice oxygen mobility. Different from conventional metal ion doping, we report that the co-doping of the classical SrCoO<sub>3-<em>δ</em></sub> by the non-metallic cation P<sup>5+</sup> and the anion Cl<sup>−</sup> stabilizes the cubic perovskite structure and allows low temperature oxygen permeation due to improved lattice oxygen mobility. In detail, P doped at the Co site transforms the crystal structure from the hexagonal phase to the cubic phase, and Cl doped at the oxygen site weakens the metal-oxygen bond, which significantly enhances the lattice oxygen mobility. Optimal doping concentrations were found to be SrCo<sub>0</sub><sub>.</sub><sub>95</sub>P<sub>0</sub><sub>.</sub><sub>05</sub>O<sub>3-<em>δ</em></sub>Cl<sub>0.05</sub> (SCP5Cl5). Furthermore, by constructing an asymmetric membrane with a sandwich structure, the oxygen permeation flux of the SCP5Cl5 ceramic membrane was up to 1.10 mL min<sup>−1</sup> cm<sup>−2</sup> at 873 K, which provides an effective strategy for developing oxygen-permeable membranes with high permeation flux at low temperatures.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123500"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010949","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Insufficient structural stability and limited lattice oxygen mobility at low temperatures seriously limit the application of perovskite-type oxides in mixed ionic-electronic conducting oxygen-permeable membranes. Engineering the crystal structure and oxygen vacancies by ion doping is an effective strategy to enhance both structural stability and lattice oxygen mobility. Different from conventional metal ion doping, we report that the co-doping of the classical SrCoO3-δ by the non-metallic cation P5+ and the anion Cl stabilizes the cubic perovskite structure and allows low temperature oxygen permeation due to improved lattice oxygen mobility. In detail, P doped at the Co site transforms the crystal structure from the hexagonal phase to the cubic phase, and Cl doped at the oxygen site weakens the metal-oxygen bond, which significantly enhances the lattice oxygen mobility. Optimal doping concentrations were found to be SrCo0.95P0.05O3-δCl0.05 (SCP5Cl5). Furthermore, by constructing an asymmetric membrane with a sandwich structure, the oxygen permeation flux of the SCP5Cl5 ceramic membrane was up to 1.10 mL min−1 cm−2 at 873 K, which provides an effective strategy for developing oxygen-permeable membranes with high permeation flux at low temperatures.

Abstract Image

用于低温下高效氧气渗透的非金属阳离子和阴离子共掺杂过氧化物陶瓷膜
结构稳定性不足和低温下有限的晶格氧迁移率严重限制了透氧膜中包晶型氧化物的应用。通过离子掺杂对晶体结构和氧空位进行工程化处理是提高结构稳定性和晶格氧迁移率的有效策略。与传统的金属离子掺杂不同,我们报道了非金属阳离子 P5+ 和阴离子 Cl- 共同掺杂经典的 SrCoO3-δ 可稳定立方包晶结构,并通过改善晶格氧迁移率实现低温透氧。具体来说,掺杂在 Co 位点的 P 可使晶体结构从六方相转变为立方相,而掺杂在氧位点的 Cl 可减弱金属-氧键,从而显著提高晶格氧迁移率。最佳掺杂浓度为 SrCo0.95P0.05O3-δCl0.05(SCP5Cl5)。此外,通过构建具有三明治结构的不对称膜,SCP5Cl5 陶瓷膜在 873 K 时的氧气渗透通量高达 1.10 mL min-1 cm-2,这为开发低温高渗透通量透氧膜提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信