Highly efficient porous MXene desalination membranes controlled by the thickness of the transition metal carbides

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Ting Si , Xinyao Ma , Zhenyu Liao , Huan Chen , Bochun Liang , Sai Tak Chu , Jun Fan
{"title":"Highly efficient porous MXene desalination membranes controlled by the thickness of the transition metal carbides","authors":"Ting Si ,&nbsp;Xinyao Ma ,&nbsp;Zhenyu Liao ,&nbsp;Huan Chen ,&nbsp;Bochun Liang ,&nbsp;Sai Tak Chu ,&nbsp;Jun Fan","doi":"10.1016/j.memsci.2024.123468","DOIUrl":null,"url":null,"abstract":"<div><div>MXene membrane has the vast potential to alleviate the global freshwater crisis. Herein, a new strategy for improving the desalination performance is proposed through tunable the thickness transition metal carbides of the nano-porous MXene membrane. The thickness of porous MXene is investigated by molecular dynamics (MD) simulation, including the Ti<sub>2</sub>CF<sub>2</sub>, Ti<sub>3</sub>C<sub>2</sub>F<sub>2</sub>, and Ti<sub>4</sub>C<sub>3</sub>F<sub>2</sub>. The results show that the porous MXene membrane can reach highly efficient desalination. The water density distribution reveals that more water gathers in the thicker transition metal carbides layer, contributing to the poor water flux; the average charge distribution indicates that the transition metal layer plays an essential role in effectively rejecting Na<sup>+</sup>/trapping Cl<sup>−</sup> ions. Multilayered porous membranes are explored to improve the trade-off desalination performance. The number of pores enhances the water permeability, and the multilayers improve the ion rejection. The two-layered Ti<sub>3</sub>C<sub>2</sub>F<sub>2</sub> membrane with three nanopores achieves nearly doubled water flux and keeps 100 % ion rejection. Our work reported that the nano-porous MXene membrane offers a prospective strategy to eliminate the current design defects, which provides an innovative method for the desalination semipermeable membrane industry.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123468"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010627","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MXene membrane has the vast potential to alleviate the global freshwater crisis. Herein, a new strategy for improving the desalination performance is proposed through tunable the thickness transition metal carbides of the nano-porous MXene membrane. The thickness of porous MXene is investigated by molecular dynamics (MD) simulation, including the Ti2CF2, Ti3C2F2, and Ti4C3F2. The results show that the porous MXene membrane can reach highly efficient desalination. The water density distribution reveals that more water gathers in the thicker transition metal carbides layer, contributing to the poor water flux; the average charge distribution indicates that the transition metal layer plays an essential role in effectively rejecting Na+/trapping Cl ions. Multilayered porous membranes are explored to improve the trade-off desalination performance. The number of pores enhances the water permeability, and the multilayers improve the ion rejection. The two-layered Ti3C2F2 membrane with three nanopores achieves nearly doubled water flux and keeps 100 % ion rejection. Our work reported that the nano-porous MXene membrane offers a prospective strategy to eliminate the current design defects, which provides an innovative method for the desalination semipermeable membrane industry.

Abstract Image

由过渡金属碳化物厚度控制的高效多孔 MXene 海水淡化膜
MXene 膜具有缓解全球淡水危机的巨大潜力。本文提出了一种通过调节纳米多孔 MXene 膜的过渡金属碳化物厚度来提高海水淡化性能的新策略。通过分子动力学(MD)模拟研究了多孔 MXene 的厚度,包括 Ti2CF2、Ti3C2F2 和 Ti4C3F2。结果表明,多孔 MXene 膜可以实现高效脱盐。水密度分布表明,更多的水聚集在较厚的过渡金属碳化物层中,导致水通量较差;平均电荷分布表明,过渡金属层在有效排斥 Na+ 离子/捕获 Cl- 离子方面起着至关重要的作用。多层多孔膜被用来改善海水淡化性能。孔隙数量可提高透水性,而多层膜则可改善离子阻隔性。具有三个纳米孔的双层 Ti3C2F2 膜实现了近两倍的水通量,并保持了 100% 的离子抑制率。我们的工作表明,纳米多孔 MXene 膜为消除现有设计缺陷提供了一种前瞻性策略,为海水淡化半透膜行业提供了一种创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信