Zhenyuan Li , Wei Lai , Ying Sun , Tianliang Han , Xing Liu , Chunfa Liao , Shuangjiang Luo
{"title":"Enhanced plasticization resistance of hollow fiber membranes via metal ion coordination for advanced helium recovery","authors":"Zhenyuan Li , Wei Lai , Ying Sun , Tianliang Han , Xing Liu , Chunfa Liao , Shuangjiang Luo","doi":"10.1016/j.memsci.2024.123480","DOIUrl":null,"url":null,"abstract":"<div><div>Plasticization can significantly impair the gas separation performance of gas separation membranes, especially for hollow fiber membranes (HFMs) with ultrathin skin layer. While conventional thermal crosslinking is an effective method to address this issue, it often leads to the transition layer collapse in HFMs, resulting in a significant decrease in gas permeance. Herein, we fabricate polyimide-cerium (PI–Ce) complex HFMs using a carboxylic group-containing 6FDA-mPDA<sub>0.65</sub>-DABA<sub>0.3</sub>-TFMB<sub>0.05</sub> copolyimide through metal ion coordination to achieve plasticization-resistance helium recovery from natural gas. We optimized dope compositions and spinning conditions to produce defect-free hollow fiber membranes with a skin layer as thin as 300 nm. The coordination between carboxyl groups and cerium ions was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The polymer-metal coordinated membranes exhibited enhanced gas selectivities compared to the pristine HFMs due to the tailored microporosity achieved through polymer-metal coordination. Furthermore, the PI-Ce HFMs demonstrated only a 10.8 % decline in mixed-gas He/CH<sub>4</sub> selectivity, which is significantly lower than the 55.4 % decline observed in pristine HFMs when exposed to CO<sub>2</sub>-containing feed pressures below 400 PSIA. Molecular dynamics simulations confirmed that coordination confined molecular chain swelling, thereby suppressing plasticization caused by CO<sub>2</sub>. The exceptional plasticization resistance of the PI-Ce complex HFMs provides a novel strategy for recovering helium from aggressive natural gas environments.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123480"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010743","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plasticization can significantly impair the gas separation performance of gas separation membranes, especially for hollow fiber membranes (HFMs) with ultrathin skin layer. While conventional thermal crosslinking is an effective method to address this issue, it often leads to the transition layer collapse in HFMs, resulting in a significant decrease in gas permeance. Herein, we fabricate polyimide-cerium (PI–Ce) complex HFMs using a carboxylic group-containing 6FDA-mPDA0.65-DABA0.3-TFMB0.05 copolyimide through metal ion coordination to achieve plasticization-resistance helium recovery from natural gas. We optimized dope compositions and spinning conditions to produce defect-free hollow fiber membranes with a skin layer as thin as 300 nm. The coordination between carboxyl groups and cerium ions was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The polymer-metal coordinated membranes exhibited enhanced gas selectivities compared to the pristine HFMs due to the tailored microporosity achieved through polymer-metal coordination. Furthermore, the PI-Ce HFMs demonstrated only a 10.8 % decline in mixed-gas He/CH4 selectivity, which is significantly lower than the 55.4 % decline observed in pristine HFMs when exposed to CO2-containing feed pressures below 400 PSIA. Molecular dynamics simulations confirmed that coordination confined molecular chain swelling, thereby suppressing plasticization caused by CO2. The exceptional plasticization resistance of the PI-Ce complex HFMs provides a novel strategy for recovering helium from aggressive natural gas environments.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.