Principal specializations of Schubert polynomials, multi-layered permutations and asymptotics

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Ningxin Zhang
{"title":"Principal specializations of Schubert polynomials, multi-layered permutations and asymptotics","authors":"Ningxin Zhang","doi":"10.1016/j.aam.2024.102806","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the largest principal specialization of Schubert polynomials for layered permutations <span><math><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>w</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>⁡</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Morales, Pak and Panova proved that there is a limit<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> and gave a precise description of layered permutations reaching the maximum. In this paper, we extend Morales Pak and Panova's results to generalized principal specialization <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>)</mo></math></span> for multi-layered permutations when <em>q</em> equals a root of unity.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102806"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001386","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let v(n) be the largest principal specialization of Schubert polynomials for layered permutations v(n):=maxwLnSw(1,,1). Morales, Pak and Panova proved that there is a limitlimnlogv(n)n2, and gave a precise description of layered permutations reaching the maximum. In this paper, we extend Morales Pak and Panova's results to generalized principal specialization Sw(1,q,q2,) for multi-layered permutations when q equals a root of unity.
舒伯特多项式的主特殊化、多层排列和渐近论
设 v(n) 是分层排列 v(n):=maxw∈LnSw(1,...1) 的舒伯特多项式的最大主特化。莫拉莱斯、帕克和帕诺娃证明了存在一个极限limn→∞logv(n)n2,并给出了达到最大值的分层排列的精确描述。在本文中,我们将莫拉莱斯-帕克和帕诺娃的结果推广到当 q 等于统一根时多层排列的广义主特殊化 Sw(1,q,q2,...)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信