Entong Xia , Heping Xie , Licheng Sun , Xiting Long , Jun Wang , Tianyi Gao , Shuheng Li , Biao Li , Cunbao Li , Mingzhong Gao , Zhengyu Mo , Min Du
{"title":"Optimal design of a high-performance heat exchanger for modular thermoelectric generator towards low-grade thermal energy recovery","authors":"Entong Xia , Heping Xie , Licheng Sun , Xiting Long , Jun Wang , Tianyi Gao , Shuheng Li , Biao Li , Cunbao Li , Mingzhong Gao , Zhengyu Mo , Min Du","doi":"10.1016/j.applthermaleng.2024.124849","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoelectric generator (TEG) has been identified as a promising method for low-grade thermal energy recovery owing to its lack of moving parts, scalability, and compatibility with other devices generating waste heat. Heat exchanger, as one of the most important components of the modular TEG, plays a crucial role in improving the overall performance of the TEG. Nevertheless, flow maldistribution inside the heat exchanger results in uneven surface temperature field of the heat exchanger, which will ultimately limit the output capacity of the TEG. Achieving a homogeneous flow distribution within the heat exchanger while minimizing flow resistance is essential. To address this, optimization of a plate-shaped heat exchanger for the modular TEG is conducted using CFD analysis and the Taguchi method to identify the optimal combination of parameters. The optimized heat exchanger demonstrates a flow maldistribution intensity (ζ) of only 4.75 % and a low flow resistance of 1.16 kPa. Furthermore, a unit of the modular TEG is constructed using two optimized heat exchangers and commercial thermoelectric modules (TEMs), and its performance is analyzed via an analytical model. The results indicate that the power per module, net power density, and conversion efficiency reached 1.2 W, 51.4 kW/m<sup>3</sup>, and 1.92 %, respectively, at a temperature difference of 70 °C. These findings suggest that the optimized heat exchanger could provide high output performance compared with other literature, offering significant potential for low-grade heat energy recovery.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"258 ","pages":"Article 124849"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124025171","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric generator (TEG) has been identified as a promising method for low-grade thermal energy recovery owing to its lack of moving parts, scalability, and compatibility with other devices generating waste heat. Heat exchanger, as one of the most important components of the modular TEG, plays a crucial role in improving the overall performance of the TEG. Nevertheless, flow maldistribution inside the heat exchanger results in uneven surface temperature field of the heat exchanger, which will ultimately limit the output capacity of the TEG. Achieving a homogeneous flow distribution within the heat exchanger while minimizing flow resistance is essential. To address this, optimization of a plate-shaped heat exchanger for the modular TEG is conducted using CFD analysis and the Taguchi method to identify the optimal combination of parameters. The optimized heat exchanger demonstrates a flow maldistribution intensity (ζ) of only 4.75 % and a low flow resistance of 1.16 kPa. Furthermore, a unit of the modular TEG is constructed using two optimized heat exchangers and commercial thermoelectric modules (TEMs), and its performance is analyzed via an analytical model. The results indicate that the power per module, net power density, and conversion efficiency reached 1.2 W, 51.4 kW/m3, and 1.92 %, respectively, at a temperature difference of 70 °C. These findings suggest that the optimized heat exchanger could provide high output performance compared with other literature, offering significant potential for low-grade heat energy recovery.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.