Multi-window STFT phase retrieval: Lattice uniqueness

IF 1.7 2区 数学 Q1 MATHEMATICS
Philipp Grohs , Lukas Liehr , Martin Rathmair
{"title":"Multi-window STFT phase retrieval: Lattice uniqueness","authors":"Philipp Grohs ,&nbsp;Lukas Liehr ,&nbsp;Martin Rathmair","doi":"10.1016/j.jfa.2024.110733","DOIUrl":null,"url":null,"abstract":"<div><div>Short-time Fourier transform (STFT) phase retrieval refers to the reconstruction of a function <em>f</em> from its spectrogram, i.e., the magnitudes of its short-time Fourier transform <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi></math></span> with window function <em>g</em>. While it is known that for appropriate windows, any function <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> can be reconstructed from the full spectrogram <span><math><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>|</mo></math></span>, in practical scenarios, the reconstruction must be achieved from discrete samples, typically taken on a lattice. It turns out that the sampled problem becomes much more subtle: recent results have demonstrated that uniqueness via lattice-sampling is unachievable, irrespective of the choice of the window function or the lattice density. In the present paper, we initiate the study of multi-window STFT phase retrieval as a way to effectively bypass the discretization barriers encountered in the single-window case. By establishing a link between multi-window Gabor systems, sampling in Fock space, and phase retrieval for finite frames, we derive conditions under which square-integrable functions can be uniquely recovered from spectrogram samples on a lattice. Specifically, we provide conditions on window functions <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, such that every <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is determined up to a global phase from<span><span><span><math><mrow><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mi>f</mi><mo>(</mo><mi>A</mi><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>|</mo><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mi>f</mi><mo>(</mo><mi>A</mi><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>|</mo><mo>)</mo></mrow></math></span></span></span> whenever <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> satisfies the density condition <span><math><mo>|</mo><mi>det</mi><mo>⁡</mo><mi>A</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≥</mo><mn>4</mn></math></span>. For real-valued functions, a density of <span><math><mo>|</mo><mi>det</mi><mo>⁡</mo><mi>A</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≥</mo><mn>2</mn></math></span> is sufficient. Corresponding results for irregular sampling are also shown.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110733"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400421X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Short-time Fourier transform (STFT) phase retrieval refers to the reconstruction of a function f from its spectrogram, i.e., the magnitudes of its short-time Fourier transform Vgf with window function g. While it is known that for appropriate windows, any function fL2(R) can be reconstructed from the full spectrogram |Vgf(R2)|, in practical scenarios, the reconstruction must be achieved from discrete samples, typically taken on a lattice. It turns out that the sampled problem becomes much more subtle: recent results have demonstrated that uniqueness via lattice-sampling is unachievable, irrespective of the choice of the window function or the lattice density. In the present paper, we initiate the study of multi-window STFT phase retrieval as a way to effectively bypass the discretization barriers encountered in the single-window case. By establishing a link between multi-window Gabor systems, sampling in Fock space, and phase retrieval for finite frames, we derive conditions under which square-integrable functions can be uniquely recovered from spectrogram samples on a lattice. Specifically, we provide conditions on window functions g1,,g4L2(R), such that every fL2(R) is determined up to a global phase from(|Vg1f(AZ2)|,,|Vg4f(AZ2)|) whenever AGL2(R) satisfies the density condition |detA|14. For real-valued functions, a density of |detA|12 is sufficient. Corresponding results for irregular sampling are also shown.
多窗口 STFT 相位检索:晶格唯一性
短时傅里叶变换(STFT)相位检索是指从函数 f 的频谱图(即其短时傅里叶变换 Vgf 与窗口函数 g 的大小)中重建函数 f。众所周知,对于适当的窗口,任何函数 f∈L2(R) 都可以从完整的频谱图 |Vgf(R2)| 中重建,但在实际应用中,重建必须从离散采样(通常在晶格上采样)中实现。事实证明,采样问题变得更加微妙:最近的研究结果表明,无论窗口函数或网格密度如何选择,通过网格采样都无法实现唯一性。在本文中,我们开始研究多窗口 STFT 相位检索,以此有效绕过单窗口情况下遇到的离散化障碍。通过在多窗口 Gabor 系统、Fock 空间采样和有限帧相位检索之间建立联系,我们推导出了从网格上的频谱图样本中唯一恢复方积分函数的条件。具体来说,我们提供了窗口函数 g1、......、g4∈L2(R) 的条件,只要 A∈GL2(R) 满足密度条件 |detA|-1≥4,则每个 f∈L2(R) 的全局相位都是由(|Vg1f(AZ2)|,......,|Vg4f(AZ2)|)确定的。对于实值函数,|detA|-1≥2 的密度就足够了。同时还显示了不规则采样的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信