Power boundedness and related properties for weighted composition operators on S(Rd)

IF 1.7 2区 数学 Q1 MATHEMATICS
Vicente Asensio , Enrique Jordá , Thomas Kalmes
{"title":"Power boundedness and related properties for weighted composition operators on S(Rd)","authors":"Vicente Asensio ,&nbsp;Enrique Jordá ,&nbsp;Thomas Kalmes","doi":"10.1016/j.jfa.2024.110745","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize those pairs <span><math><mo>(</mo><mi>ψ</mi><mo>,</mo><mi>φ</mi><mo>)</mo></math></span> of smooth mappings <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>C</mi><mo>,</mo><mi>φ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for which the corresponding weighted composition operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub><mi>f</mi><mo>=</mo><mi>ψ</mi><mo>⋅</mo><mo>(</mo><mi>f</mi><mo>∘</mo><mi>φ</mi><mo>)</mo></math></span> acts continuously on <span><math><mi>S</mi><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Additionally, we give several easy-to-check necessary and sufficient conditions of this property for interesting special cases. Moreover, we characterize power boundedness and topologizablity of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> on <span><math><mi>S</mi><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in terms of <span><math><mi>ψ</mi><mo>,</mo><mi>φ</mi></math></span>. Among other things, as an application of our results we show that for a univariate polynomial <em>φ</em> with <span><math><mtext>deg</mtext><mo>(</mo><mi>φ</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span>, power boundedness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> on <span><math><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for every <span><math><mi>ψ</mi><mo>∈</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> only depends on <em>φ</em> and that in this case power boundedness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> is equivalent to <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> converging to 0 in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>)</mo></math></span> as well as to the uniform mean ergodicity of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span>. Additionally, we give an example of a power bounded and uniformly mean ergodic weighted composition operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> on <span><math><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for which neither the multiplication operator <span><math><mi>f</mi><mo>↦</mo><mi>ψ</mi><mi>f</mi></math></span> nor the composition operator <span><math><mi>f</mi><mo>↦</mo><mi>f</mi><mo>∘</mo><mi>φ</mi></math></span> acts on <span><math><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our results complement and considerably extend various results of Fernández, Galbis, and the second named author.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110745"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004336","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize those pairs (ψ,φ) of smooth mappings ψ:RdC,φ:RdRd for which the corresponding weighted composition operator Cψ,φf=ψ(fφ) acts continuously on S(Rd). Additionally, we give several easy-to-check necessary and sufficient conditions of this property for interesting special cases. Moreover, we characterize power boundedness and topologizablity of Cψ,φ on S(Rd) in terms of ψ,φ. Among other things, as an application of our results we show that for a univariate polynomial φ with deg(φ)2, power boundedness of Cψ,φ on S(R) for every ψOM(R) only depends on φ and that in this case power boundedness of Cψ,φ is equivalent to (Cψ,φn)nN converging to 0 in Lb(S(R)) as well as to the uniform mean ergodicity of Cψ,φ. Additionally, we give an example of a power bounded and uniformly mean ergodic weighted composition operator Cψ,φ on S(R) for which neither the multiplication operator fψf nor the composition operator ffφ acts on S(R). Our results complement and considerably extend various results of Fernández, Galbis, and the second named author.
S(Rd) 上加权合成算子的幂有界性及相关性质
我们描述了平滑映射ψ:Rd→C,φ:Rd→Rd 的对 (ψ,φ),对于这些映射,相应的加权合成算子 Cψ,φf=ψ⋅(f∘φ) 连续作用于 S(Rd)。此外,我们还针对有趣的特殊情况给出了这一性质的几个易于检查的必要条件和充分条件。此外,我们用 ψ,φ 来描述 S(Rd) 上 Cψ,φ 的幂有界性和拓扑性。此外,作为我们结果的应用,我们还证明了对于deg(φ)≥2 的单变量多项式φ,Cψ.φ 在 S(R) 上的幂有界性、在这种情况下,Cψ,φ 的幂有界性等价于(Cψ,φn)n∈N 在 Lb(S(R))中收敛于 0,以及 Cψ,φ 的均匀均值遍历性。此外,我们还举例说明了 S(R) 上的幂有界且均匀均值遍历的加权合成算子 Cψ,φ,其乘法算子 f↦ψf 和合成算子 f↦f∘φ 均不作用于 S(R)。我们的结果补充并大大扩展了费尔南德斯、加尔比斯和第二作者的各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信