{"title":"Power boundedness and related properties for weighted composition operators on S(Rd)","authors":"Vicente Asensio , Enrique Jordá , Thomas Kalmes","doi":"10.1016/j.jfa.2024.110745","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize those pairs <span><math><mo>(</mo><mi>ψ</mi><mo>,</mo><mi>φ</mi><mo>)</mo></math></span> of smooth mappings <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>C</mi><mo>,</mo><mi>φ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for which the corresponding weighted composition operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub><mi>f</mi><mo>=</mo><mi>ψ</mi><mo>⋅</mo><mo>(</mo><mi>f</mi><mo>∘</mo><mi>φ</mi><mo>)</mo></math></span> acts continuously on <span><math><mi>S</mi><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Additionally, we give several easy-to-check necessary and sufficient conditions of this property for interesting special cases. Moreover, we characterize power boundedness and topologizablity of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> on <span><math><mi>S</mi><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in terms of <span><math><mi>ψ</mi><mo>,</mo><mi>φ</mi></math></span>. Among other things, as an application of our results we show that for a univariate polynomial <em>φ</em> with <span><math><mtext>deg</mtext><mo>(</mo><mi>φ</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span>, power boundedness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> on <span><math><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for every <span><math><mi>ψ</mi><mo>∈</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> only depends on <em>φ</em> and that in this case power boundedness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> is equivalent to <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> converging to 0 in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>)</mo></math></span> as well as to the uniform mean ergodicity of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span>. Additionally, we give an example of a power bounded and uniformly mean ergodic weighted composition operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></msub></math></span> on <span><math><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for which neither the multiplication operator <span><math><mi>f</mi><mo>↦</mo><mi>ψ</mi><mi>f</mi></math></span> nor the composition operator <span><math><mi>f</mi><mo>↦</mo><mi>f</mi><mo>∘</mo><mi>φ</mi></math></span> acts on <span><math><mi>S</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our results complement and considerably extend various results of Fernández, Galbis, and the second named author.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110745"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004336","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We characterize those pairs of smooth mappings for which the corresponding weighted composition operator acts continuously on . Additionally, we give several easy-to-check necessary and sufficient conditions of this property for interesting special cases. Moreover, we characterize power boundedness and topologizablity of on in terms of . Among other things, as an application of our results we show that for a univariate polynomial φ with , power boundedness of on for every only depends on φ and that in this case power boundedness of is equivalent to converging to 0 in as well as to the uniform mean ergodicity of . Additionally, we give an example of a power bounded and uniformly mean ergodic weighted composition operator on for which neither the multiplication operator nor the composition operator acts on . Our results complement and considerably extend various results of Fernández, Galbis, and the second named author.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis