Scalar curvature rigidity and the higher mapping degree

IF 1.7 2区 数学 Q1 MATHEMATICS
Thomas Tony
{"title":"Scalar curvature rigidity and the higher mapping degree","authors":"Thomas Tony","doi":"10.1016/j.jfa.2024.110744","DOIUrl":null,"url":null,"abstract":"<div><div>A closed connected oriented Riemannian manifold <em>N</em> with non-vanishing Euler characteristic, non-negative curvature operator and <span><math><mn>0</mn><mo>&lt;</mo><mn>2</mn><msub><mrow><mi>Ric</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is area-rigid in the sense that any area non-increasing spin map <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> with non-vanishing <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree and <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>≥</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span> is a Riemannian submersion with <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>=</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span>. This is due to Goette and Semmelmann and generalizes a result by Llarull. In this article, we show area-rigidity for not necessarily orientable manifolds with respect to a larger class of maps <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> by replacing the topological condition on the <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree by a less restrictive condition involving the so-called higher mapping degree. This includes fiber bundles over even dimensional spheres with enlargeable fibers, e.g. <span><math><msub><mrow><mi>pr</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. We develop a technique to extract from a non-vanishing higher index a geometrically useful family of almost <figure><img></figure>-harmonic sections. This also leads to a new proof of the fact that any closed connected spin manifold with non-negative scalar curvature and non-trivial Rosenberg index is Ricci flat.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110744"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004324","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A closed connected oriented Riemannian manifold N with non-vanishing Euler characteristic, non-negative curvature operator and 0<2RicN<scalN is area-rigid in the sense that any area non-increasing spin map f:MN with non-vanishing Aˆ-degree and scalMscalNf is a Riemannian submersion with scalM=scalNf. This is due to Goette and Semmelmann and generalizes a result by Llarull. In this article, we show area-rigidity for not necessarily orientable manifolds with respect to a larger class of maps f:MN by replacing the topological condition on the Aˆ-degree by a less restrictive condition involving the so-called higher mapping degree. This includes fiber bundles over even dimensional spheres with enlargeable fibers, e.g. pr1:S2n×TkS2n. We develop a technique to extract from a non-vanishing higher index a geometrically useful family of almost
-harmonic sections. This also leads to a new proof of the fact that any closed connected spin manifold with non-negative scalar curvature and non-trivial Rosenberg index is Ricci flat.
标量曲率刚度和高映射度
一个封闭连通的定向黎曼流形 N,其欧拉特征非递减,曲率算子非负,且 0<2RicN<scalN 是面积刚性的,即任何面积非递增的自旋映射 f:M→N 的 Aˆ度非递减且 scalM≥scalN∘f 是一个黎曼潜影,scalM=scalN∘f。这归功于 Goette 和 Semmelmann,并推广了 Llarull 的一个结果。在这篇文章中,我们用一个涉及所谓高映射度的限制性较小的条件取代了关于 Aˆ度的拓扑条件,从而证明了不一定是可定向流形的面积刚度,即关于更大一类映射 f:M→N 的面积刚度。这包括偶数维球面上具有可放大纤维的纤维束,例如 pr1:S2n×Tk→S2n。我们开发了一种技术,可以从非矢量高指数中提取几何上有用的近谐波截面族。这也引出了一个新的证明,即任何具有非负标量曲率和非三重罗森伯格指数的封闭连通自旋流形都是利玛窦平坦的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信