A Weyl law for the p-Laplacian

IF 1.7 2区 数学 Q1 MATHEMATICS
Liam Mazurowski
{"title":"A Weyl law for the p-Laplacian","authors":"Liam Mazurowski","doi":"10.1016/j.jfa.2024.110734","DOIUrl":null,"url":null,"abstract":"<div><div>We show that a Weyl law holds for the variational spectrum of the <em>p</em>-Laplacian. More precisely, let <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> be the variational spectrum of <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> on a closed Riemannian manifold <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> and let <span><math><mi>N</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mi>i</mi><mo>:</mo><mspace></mspace><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mi>λ</mi><mo>}</mo></math></span> be the associated counting function. Then we have a Weyl law<span><span><span><math><mi>N</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>∼</mo><mi>c</mi><mi>vol</mi><mo>(</mo><mi>X</mi><mo>)</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>/</mo><mi>p</mi></mrow></msup><mo>.</mo></math></span></span></span> This confirms a conjecture of Friedlander. The proof is based on ideas of Gromov <span><span>[5]</span></span> and Liokumovich, Marques, Neves <span><span>[7]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110734"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004221","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that a Weyl law holds for the variational spectrum of the p-Laplacian. More precisely, let (λi)i=1 be the variational spectrum of Δp on a closed Riemannian manifold (X,g) and let N(λ)=#{i:λi<λ} be the associated counting function. Then we have a Weyl lawN(λ)cvol(X)λn/p. This confirms a conjecture of Friedlander. The proof is based on ideas of Gromov [5] and Liokumovich, Marques, Neves [7].
p 拉普拉斯的韦尔定律
我们证明,p-拉普拉斯的变谱存在韦尔定律。更确切地说,设 (λi)i=1∞ 为封闭黎曼流形 (X,g) 上 Δp 的变分谱,设 N(λ)=#{i:λi<λ} 为相关的计数函数。那么我们就有一个韦尔定律N(λ)∼cvol(X)λn/p。这证实了弗里德兰德的猜想。证明基于 Gromov [5] 和 Liokumovich, Marques, Neves [7] 的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信