{"title":"Approximated harmonic maps with tension fields in Zygmund class","authors":"Jiayu Li , Xiangrong Zhu","doi":"10.1016/j.jfa.2024.110736","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose that <em>u</em> is a map from <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> to a compact smooth Riemannian manifold <em>N</em> with bounded energy. We show that there exists a constant <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> which depends only on <em>N</em> and <span><math><mi>E</mi><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> such that if the tension field <em>τ</em> belongs to Zygmund class <span><math><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo></mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span>, then the Hopf differential of <em>u</em> belongs to the Zygmund class <span><math><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mn>3</mn></mrow></msup><mo></mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> and the norm <span><math><msub><mrow><mo>‖</mo><mi>h</mi><mo>‖</mo></mrow><mrow><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mn>3</mn></mrow></msup><mo></mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></msub></math></span> depends only on <span><math><mi>N</mi><mo>,</mo><mi>E</mi><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mo>‖</mo><mi>τ</mi><mo>‖</mo></mrow><mrow><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo></mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></mrow></msub></math></span>. As a direct corollary, we obtain the energy identity and necklessness of a blow-up sequence <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with bounded energy <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and bounded <span><math><mi>τ</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> in <span><math><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo></mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110736"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004245","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose that u is a map from to a compact smooth Riemannian manifold N with bounded energy. We show that there exists a constant which depends only on N and such that if the tension field τ belongs to Zygmund class , then the Hopf differential of u belongs to the Zygmund class and the norm depends only on and . As a direct corollary, we obtain the energy identity and necklessness of a blow-up sequence with bounded energy and bounded in .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis