Risk assessment and sources associated with potentially toxic elements in suspended particulate matter: A karst river perspective in active mining area
Yeye Ren , Y.Jun Xu , Pan Wu , Jie Zeng , Changmei Yao , Guangxi Long , Xingxing Cao
{"title":"Risk assessment and sources associated with potentially toxic elements in suspended particulate matter: A karst river perspective in active mining area","authors":"Yeye Ren , Y.Jun Xu , Pan Wu , Jie Zeng , Changmei Yao , Guangxi Long , Xingxing Cao","doi":"10.1016/j.ejrh.2024.102052","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Daiyang River Basin, a typical karst river basin impacted by mining activities in Guizhou, Southwest China.</div></div><div><h3>Study focus</h3><div>Rivers are fundamental components of regional water security, but they are facing potentially toxic elements (PTEs) pollution caused by mining activities. This study investigated the concentration, behavior, risks and sources of nine PTEs in suspended particulate matter (SPM) from mining-impacted karst rivers, which are essential for the safety and management of karst water environments.</div></div><div><h3>New hydrological insights for the region</h3><div>The contents of Cr, Ni, Cu, Zn, As, Cd, Sb and Hg exceeded the corresponding local soil background values, with Zn and Cu being the most important pollutants. These elements caused a very high potential toxicity risk to the basin and unacceptable carcinogenic and non-carcinogenic risks to the local residents. Correlation analysis and the positive matrix factorization (PMF) model indicated that Ni, Cd, Zn and Cu were mainly derived from mixed sources of geological background and anthropogenic activities (30.95 %), Hg, Sb, and As were related to coal mining and combustion sources (28.91 %), while Pb, As, Cr and Sb were mainly contributed by natural sources (40.15 %). Furthermore, mixed sources, mining-related sources and As were identified as priority control factors in the study area. These insights can provide powerful support for decision-makers to develop control policies and reduce PTEs pollution in karst areas.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102052"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824004014","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Study region
Daiyang River Basin, a typical karst river basin impacted by mining activities in Guizhou, Southwest China.
Study focus
Rivers are fundamental components of regional water security, but they are facing potentially toxic elements (PTEs) pollution caused by mining activities. This study investigated the concentration, behavior, risks and sources of nine PTEs in suspended particulate matter (SPM) from mining-impacted karst rivers, which are essential for the safety and management of karst water environments.
New hydrological insights for the region
The contents of Cr, Ni, Cu, Zn, As, Cd, Sb and Hg exceeded the corresponding local soil background values, with Zn and Cu being the most important pollutants. These elements caused a very high potential toxicity risk to the basin and unacceptable carcinogenic and non-carcinogenic risks to the local residents. Correlation analysis and the positive matrix factorization (PMF) model indicated that Ni, Cd, Zn and Cu were mainly derived from mixed sources of geological background and anthropogenic activities (30.95 %), Hg, Sb, and As were related to coal mining and combustion sources (28.91 %), while Pb, As, Cr and Sb were mainly contributed by natural sources (40.15 %). Furthermore, mixed sources, mining-related sources and As were identified as priority control factors in the study area. These insights can provide powerful support for decision-makers to develop control policies and reduce PTEs pollution in karst areas.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.