Lipschitz truncation method for parabolic double-phase systems and applications

IF 1.7 2区 数学 Q1 MATHEMATICS
Wontae Kim, Juha Kinnunen, Lauri Särkiö
{"title":"Lipschitz truncation method for parabolic double-phase systems and applications","authors":"Wontae Kim,&nbsp;Juha Kinnunen,&nbsp;Lauri Särkiö","doi":"10.1016/j.jfa.2024.110738","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss a Lipschitz truncation technique for parabolic double-phase problems of <em>p</em>-Laplace type in order to prove energy estimates and uniqueness results for the Dirichlet problem. Moreover, we show existence for a non-homogeneous double-phase problem. The Lipschitz truncation method is based on a Whitney-type covering result and a related partition of unity in the intrinsic geometry for the double-phase problem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110738"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004269","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss a Lipschitz truncation technique for parabolic double-phase problems of p-Laplace type in order to prove energy estimates and uniqueness results for the Dirichlet problem. Moreover, we show existence for a non-homogeneous double-phase problem. The Lipschitz truncation method is based on a Whitney-type covering result and a related partition of unity in the intrinsic geometry for the double-phase problem.
抛物线双相系统的 Lipschitz 截断法及其应用
我们讨论了 p-Laplace 型抛物线双相问题的 Lipschitz 截断技术,以证明 Dirichlet 问题的能量估计和唯一性结果。此外,我们还证明了非均质双相问题的存在性。Lipschitz截断方法基于惠特尼型覆盖结果和双相问题内在几何中的相关统一分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信