{"title":"Lipschitz truncation method for parabolic double-phase systems and applications","authors":"Wontae Kim, Juha Kinnunen, Lauri Särkiö","doi":"10.1016/j.jfa.2024.110738","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss a Lipschitz truncation technique for parabolic double-phase problems of <em>p</em>-Laplace type in order to prove energy estimates and uniqueness results for the Dirichlet problem. Moreover, we show existence for a non-homogeneous double-phase problem. The Lipschitz truncation method is based on a Whitney-type covering result and a related partition of unity in the intrinsic geometry for the double-phase problem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110738"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004269","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss a Lipschitz truncation technique for parabolic double-phase problems of p-Laplace type in order to prove energy estimates and uniqueness results for the Dirichlet problem. Moreover, we show existence for a non-homogeneous double-phase problem. The Lipschitz truncation method is based on a Whitney-type covering result and a related partition of unity in the intrinsic geometry for the double-phase problem.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis