{"title":"Metamodel-based optimization of a high-tension cable barrier in crash tests with a large SUV","authors":"Dawid Bruski , Hongbing Fang","doi":"10.1016/j.engstruct.2024.119291","DOIUrl":null,"url":null,"abstract":"<div><div>Road safety barriers play an important role in improving road safety. Cable barriers are one of the types of road barriers. Cable barriers have favorable collision-related properties, especially in terms of the safety of the vehicle occupants. Despite the continuous development of road barrier systems, the current European standard EN1317, which is used to evaluate the performance of road barriers, does not take into account all possible crash scenarios and all possible types of impacting vehicles. Sport utility vehicles (SUVs) are one of the types of vehicles that the EN1317 standard does not consider. SUVs are widely used on European roads. The work aims to optimize a high-tension 3-cable barrier system in crash tests with a large SUV. The research utilized the methods related to the design of the experiment, numerical simulations of crash tests, metamodeling, and multi-objective optimization (MOO) algorithms – WSF and NSGA-II. In the optimization, two aspects of the barrier were considered, economical and structural. The primary result of the study was the determination of four optimized designs for the cable barrier. These designs represent different trade-offs between the objective functions, offering various solutions depending on the specific engineering needs. The proposed barrier designs are characterized, among others, by a reduction in barrier mass, a reduction in the lateral deflections of the barrier, and a reduction in the number of posts that would need to be replaced after an SUV collision. The methodology used and the results achieved may be useful in the process of designing, testing, and optimizing other road safety barriers.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"323 ","pages":"Article 119291"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624018534","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Road safety barriers play an important role in improving road safety. Cable barriers are one of the types of road barriers. Cable barriers have favorable collision-related properties, especially in terms of the safety of the vehicle occupants. Despite the continuous development of road barrier systems, the current European standard EN1317, which is used to evaluate the performance of road barriers, does not take into account all possible crash scenarios and all possible types of impacting vehicles. Sport utility vehicles (SUVs) are one of the types of vehicles that the EN1317 standard does not consider. SUVs are widely used on European roads. The work aims to optimize a high-tension 3-cable barrier system in crash tests with a large SUV. The research utilized the methods related to the design of the experiment, numerical simulations of crash tests, metamodeling, and multi-objective optimization (MOO) algorithms – WSF and NSGA-II. In the optimization, two aspects of the barrier were considered, economical and structural. The primary result of the study was the determination of four optimized designs for the cable barrier. These designs represent different trade-offs between the objective functions, offering various solutions depending on the specific engineering needs. The proposed barrier designs are characterized, among others, by a reduction in barrier mass, a reduction in the lateral deflections of the barrier, and a reduction in the number of posts that would need to be replaced after an SUV collision. The methodology used and the results achieved may be useful in the process of designing, testing, and optimizing other road safety barriers.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.