{"title":"Stress field models for discontinuity regions in steel-reinforced laminated glass","authors":"Mirko Pejatović, Robby Caspeele, Jan Belis","doi":"10.1016/j.engstruct.2024.119287","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents the application of stress field models for strength prediction of discontinuity regions in steel-reinforced glass structures failing due to crushing of the glass and failure of stainless steel reinforcement. One of the main assumptions in the proposed modelling approach is that the structural laminated glass has similar compressive features as high-strength concrete within a framework of the stress field method. The paper initially introduces theoretical and experimental aspects and similarities between compressive behaviour of glass and high-strength concrete. Considerations on the compressive strength of laminated glass as well as the softening effect of cracks through the transverse strain factor are presented. The softening effect of cracks is investigated using the results of bending tests on beams and detailed digital image correlation (DIC) measurements. Finally, the proposed models are compared with results of tests on steel-reinforced glass members encompassing local compressive tests, bending tests and tests on beam-column connections. Additionally, the three groups of tests are numerically simulated using elastic-plastic stress fields (EPSF), through the finite element (FE) software EvalS for the automatic development of 2D stress fields. This numerical tool was originally developed for design and assessment of RC discontinuity regions. It is found that the numerical predictions are in a good agreement with test results. It is concluded that the stress fields may serve as a tool for the verification of a post-fracture limit state.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"323 ","pages":"Article 119287"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624018492","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents the application of stress field models for strength prediction of discontinuity regions in steel-reinforced glass structures failing due to crushing of the glass and failure of stainless steel reinforcement. One of the main assumptions in the proposed modelling approach is that the structural laminated glass has similar compressive features as high-strength concrete within a framework of the stress field method. The paper initially introduces theoretical and experimental aspects and similarities between compressive behaviour of glass and high-strength concrete. Considerations on the compressive strength of laminated glass as well as the softening effect of cracks through the transverse strain factor are presented. The softening effect of cracks is investigated using the results of bending tests on beams and detailed digital image correlation (DIC) measurements. Finally, the proposed models are compared with results of tests on steel-reinforced glass members encompassing local compressive tests, bending tests and tests on beam-column connections. Additionally, the three groups of tests are numerically simulated using elastic-plastic stress fields (EPSF), through the finite element (FE) software EvalS for the automatic development of 2D stress fields. This numerical tool was originally developed for design and assessment of RC discontinuity regions. It is found that the numerical predictions are in a good agreement with test results. It is concluded that the stress fields may serve as a tool for the verification of a post-fracture limit state.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.