Affine manifolds: The differential geometry of the multi-dimensionally consistent TED equation

IF 1.6 3区 数学 Q1 MATHEMATICS
W.K. Schief , U. Hertrich-Jeromin , B.G. Konopelchenko
{"title":"Affine manifolds: The differential geometry of the multi-dimensionally consistent TED equation","authors":"W.K. Schief ,&nbsp;U. Hertrich-Jeromin ,&nbsp;B.G. Konopelchenko","doi":"10.1016/j.geomphys.2024.105366","DOIUrl":null,"url":null,"abstract":"<div><div>It is shown that a canonical geometric setting of the integrable TED equation is a Kählerian tangent bundle of an affine manifold. The remarkable multi-dimensional consistency of this 4+4-dimensional dispersionless partial differential equation arises naturally in this context. In a particular 4-dimensional reduction, the affine manifolds turn out to be self-dual Einstein spaces of neutral signature governed by Plebański's first heavenly equation. In another reduction, the affine manifolds are Hessian, governed by compatible general heavenly equations. The Legendre invariance of the latter gives rise to a (dual) Hessian structure. Foliations of affine manifolds in terms of self-dual Einstein spaces are also shown to arise in connection with a natural 5-dimensional reduction.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"207 ","pages":"Article 105366"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002675","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown that a canonical geometric setting of the integrable TED equation is a Kählerian tangent bundle of an affine manifold. The remarkable multi-dimensional consistency of this 4+4-dimensional dispersionless partial differential equation arises naturally in this context. In a particular 4-dimensional reduction, the affine manifolds turn out to be self-dual Einstein spaces of neutral signature governed by Plebański's first heavenly equation. In another reduction, the affine manifolds are Hessian, governed by compatible general heavenly equations. The Legendre invariance of the latter gives rise to a (dual) Hessian structure. Foliations of affine manifolds in terms of self-dual Einstein spaces are also shown to arise in connection with a natural 5-dimensional reduction.
仿射流形:多维一致 TED 方程的微分几何学
研究表明,可积分 TED 方程的典型几何背景是仿射流形的 Kählerian 切线束。在此背景下,这个 4+4 维无色散偏微分方程的显著多维一致性自然而然地产生了。在一个特定的 4 维还原中,仿射流形变成了受普莱宾斯基第一天堂方程支配的中性签名的自偶爱因斯坦空间。在另一种还原中,仿射流形是黑森的,受兼容的一般天体方程支配。后者的 Legendre 不变性产生了(双重)Hessian 结构。仿射流形的自双爱因斯坦空间对折也与一个自然的 5 维还原相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信