{"title":"Visible light photocatalytic reduction of toxic chemical organophosphate monocrotophos using reduced graphene oxide derived from bamboo leaves","authors":"Pukrambam Dipak, UPS Gahlaut, Y.C. Goswami","doi":"10.1016/j.scowo.2024.100031","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, graphene oxide (GO) was synthesized from waste bamboo leaves using a pyrolysis and ultra-sonication technique. UV–visible spectroscopy revealed a prominent absorption peak at 230 nm, while Raman spectroscopy confirmed the presence of characteristic D-band (1340 cm⁻¹) and G-band (1596 cm⁻¹). XRD analysis showed a peak at 11.5°, corresponding to a lattice spacing of 3 nm, and SEM/TEM imaging demonstrated the formation of multi-layered graphene sheets. The synthesized GO was evaluated for the photocatalytic degradation of the organophosphate pesticide monocrotophos under visible light. At a concentration of 25 mg/L, graphene exhibited a removal efficiency of 98 % with a degradation rate of 0.036 ppm/min, following a Langmuir isotherm and pseudo-first-order kinetic model. The significance of this study lies in the potential environmental application, offering an economical and sustainable solution for the decontamination of pesticide-contaminated water sources. The method could contribute significantly for reducing environmental pollution and addressing global water safety challenges.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"4 ","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, graphene oxide (GO) was synthesized from waste bamboo leaves using a pyrolysis and ultra-sonication technique. UV–visible spectroscopy revealed a prominent absorption peak at 230 nm, while Raman spectroscopy confirmed the presence of characteristic D-band (1340 cm⁻¹) and G-band (1596 cm⁻¹). XRD analysis showed a peak at 11.5°, corresponding to a lattice spacing of 3 nm, and SEM/TEM imaging demonstrated the formation of multi-layered graphene sheets. The synthesized GO was evaluated for the photocatalytic degradation of the organophosphate pesticide monocrotophos under visible light. At a concentration of 25 mg/L, graphene exhibited a removal efficiency of 98 % with a degradation rate of 0.036 ppm/min, following a Langmuir isotherm and pseudo-first-order kinetic model. The significance of this study lies in the potential environmental application, offering an economical and sustainable solution for the decontamination of pesticide-contaminated water sources. The method could contribute significantly for reducing environmental pollution and addressing global water safety challenges.