A novel mechanism to accelerate stress relaxation of toughened blends: Stress-induced core-shell morphological reconstruction and its application in thermoforming and dimensional stabilization
Jielong Lin , Shibing Ye , Yong Zhang , Xiaoyun Yang , Jiqing Liu , Long Chen , Hongyao Xu
{"title":"A novel mechanism to accelerate stress relaxation of toughened blends: Stress-induced core-shell morphological reconstruction and its application in thermoforming and dimensional stabilization","authors":"Jielong Lin , Shibing Ye , Yong Zhang , Xiaoyun Yang , Jiqing Liu , Long Chen , Hongyao Xu","doi":"10.1016/j.compositesb.2024.111910","DOIUrl":null,"url":null,"abstract":"<div><div>Improving thermoforming efficiency and dimensional stability in thermoplastic products is a common challenge. This study investigates toughened polyamide 612 (PA612) blends made by adding maleic anhydride-functionalized SEBS (mSEBS) elastomers, along with high-density polyethylene (HDPE), polyphenylene Oxide (PPO), and polyphenylene Sulfide (PPS). Analyses showed that mSEBS forms a core-shell structure with HDPE or PPO and a sea-island structure with PPS in the PA612 matrix. The study uniquely examines how these structures affect stress relaxation. The results, modeled by a steady-state creep model, revealed that the core-shell structures reduced the characteristic relaxation time (λ) by over three orders of magnitude compared to PA612/mSEBS blends. Additionally, PA612/mSEBS/HDPE blends were more temperature-sensitive, reducing λ by six orders of magnitude compared to PA612/mSEBS/PPO blends. Further analysis showed that stress-induced core-shell morphological reconstruction (SCMR) significantly improved stress relaxation by promoting extensive plastic deformation and energy dissipation. These toughened PA612 blends exhibited excellent thermoforming efficiency and dimensional stability. A 3D finite element model confirmed SCMR as an effective strategy for stress relaxation, providing valuable insights for designing toughened blends with superior processing efficiency and stability.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"290 ","pages":"Article 111910"},"PeriodicalIF":12.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007224","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving thermoforming efficiency and dimensional stability in thermoplastic products is a common challenge. This study investigates toughened polyamide 612 (PA612) blends made by adding maleic anhydride-functionalized SEBS (mSEBS) elastomers, along with high-density polyethylene (HDPE), polyphenylene Oxide (PPO), and polyphenylene Sulfide (PPS). Analyses showed that mSEBS forms a core-shell structure with HDPE or PPO and a sea-island structure with PPS in the PA612 matrix. The study uniquely examines how these structures affect stress relaxation. The results, modeled by a steady-state creep model, revealed that the core-shell structures reduced the characteristic relaxation time (λ) by over three orders of magnitude compared to PA612/mSEBS blends. Additionally, PA612/mSEBS/HDPE blends were more temperature-sensitive, reducing λ by six orders of magnitude compared to PA612/mSEBS/PPO blends. Further analysis showed that stress-induced core-shell morphological reconstruction (SCMR) significantly improved stress relaxation by promoting extensive plastic deformation and energy dissipation. These toughened PA612 blends exhibited excellent thermoforming efficiency and dimensional stability. A 3D finite element model confirmed SCMR as an effective strategy for stress relaxation, providing valuable insights for designing toughened blends with superior processing efficiency and stability.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.