{"title":"Atomic layer deposition of tin monosulfide thin film using Sn(acac)2 and H2S","authors":"Dowwook Lee , Hyeongtag Jeon","doi":"10.1016/j.vacuum.2024.113808","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we deposited tin monosulfide (SnS) thin film using Tin(II) 2,4-pentanedionate [Sn(acac)2] precursor and hydrogen sulfide (H2S) reactant. And we performed post annealing to improve the crystallinity of SnS thin films. The process window was 130 °C–150 °C, and the growth rate was 0.34 Å/cycle. To investigate crystallinity and the phase of SnS thin films, grazing incidence x-ray diffraction (GI-XRD) and Raman spectroscopy were performed. SnS thin films showed a single orthorhombic phase after annealing. In addition, transmission electron microscopy (TEM) was utilized to confirm the two-dimensional (2D) layered structure of SnS thin films. Post-annealed SnS thin film clearly showed a 2D layered structure. X-ray photoelectron spectroscopy (XPS) was performed to confirm the bonding state of the thin film. The results indicated that the SnS thin film only shows binding energies corresponding to the oxidation states of Sn<sup>2+</sup> in the Sn 3d spectra and S<sup>2-</sup> in the S 2p spectra. Ultraviolet–visible (UV–vis) spectroscopy and ultraviolet photoelectron spectroscopy (UPS) were performed to confirm the optical properties and to calculate the band structure of the thin film. All of SnS thin film showed a p-type characteristic. The post-annealed SnS thin films exhibited better electric properties, confirmed by Hall measurement.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113808"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008546","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we deposited tin monosulfide (SnS) thin film using Tin(II) 2,4-pentanedionate [Sn(acac)2] precursor and hydrogen sulfide (H2S) reactant. And we performed post annealing to improve the crystallinity of SnS thin films. The process window was 130 °C–150 °C, and the growth rate was 0.34 Å/cycle. To investigate crystallinity and the phase of SnS thin films, grazing incidence x-ray diffraction (GI-XRD) and Raman spectroscopy were performed. SnS thin films showed a single orthorhombic phase after annealing. In addition, transmission electron microscopy (TEM) was utilized to confirm the two-dimensional (2D) layered structure of SnS thin films. Post-annealed SnS thin film clearly showed a 2D layered structure. X-ray photoelectron spectroscopy (XPS) was performed to confirm the bonding state of the thin film. The results indicated that the SnS thin film only shows binding energies corresponding to the oxidation states of Sn2+ in the Sn 3d spectra and S2- in the S 2p spectra. Ultraviolet–visible (UV–vis) spectroscopy and ultraviolet photoelectron spectroscopy (UPS) were performed to confirm the optical properties and to calculate the band structure of the thin film. All of SnS thin film showed a p-type characteristic. The post-annealed SnS thin films exhibited better electric properties, confirmed by Hall measurement.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.