Zhangcong Xia , Yunrong Wang , Guofeng Liu , Tao Deng , Haodong Wang , Jie Li , Wenbo Hu , Shengli Wu , Xin Zhong
{"title":"Decay of secondary electron yield of MgO–Au composite film at different incident electron energies","authors":"Zhangcong Xia , Yunrong Wang , Guofeng Liu , Tao Deng , Haodong Wang , Jie Li , Wenbo Hu , Shengli Wu , Xin Zhong","doi":"10.1016/j.vacuum.2024.113789","DOIUrl":null,"url":null,"abstract":"<div><div>The relationship between the incident electron energy and secondary electron yield (SEY) decay of MgO–Au composite film was investigated by the designed comparison experiments. Besides the incident current and the properties of the film, the SEY value and the incident electron energy were found to be the other two key factors affecting the SEY decay rate. The value of SEY and the incident electron energy have opposite influences on the SEY decay rate, which makes it necessary to analyze the curve of incident electron energy versus SEY decay rate by dividing it into three parts. In addition, the empirical formulas for SEY decay were derived from experimental data, enabling the estimation of the SEY and decay rate of the MgO–Au composite film at any moment during SEY decay. Furthermore, the cause of SEY decay was also analyzed based on the relationship between incident electron energy and the SEY decay rate. The thermal dissipation, surface roughness, and deposition of contaminants were proven not to be the determinants of SEY decay. The experiment results in this paper supported the inference that the charging effect was the primary cause of SEY decay.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113789"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008352","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The relationship between the incident electron energy and secondary electron yield (SEY) decay of MgO–Au composite film was investigated by the designed comparison experiments. Besides the incident current and the properties of the film, the SEY value and the incident electron energy were found to be the other two key factors affecting the SEY decay rate. The value of SEY and the incident electron energy have opposite influences on the SEY decay rate, which makes it necessary to analyze the curve of incident electron energy versus SEY decay rate by dividing it into three parts. In addition, the empirical formulas for SEY decay were derived from experimental data, enabling the estimation of the SEY and decay rate of the MgO–Au composite film at any moment during SEY decay. Furthermore, the cause of SEY decay was also analyzed based on the relationship between incident electron energy and the SEY decay rate. The thermal dissipation, surface roughness, and deposition of contaminants were proven not to be the determinants of SEY decay. The experiment results in this paper supported the inference that the charging effect was the primary cause of SEY decay.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.