Capacitance-based mass flow rate measurement of two-phase hydrogen in a 0.5 in. tube

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Benjamin Straiton , Matthew Charleston , Qussai Marashdeh , Jonathan Harrison , Matthew Reppa
{"title":"Capacitance-based mass flow rate measurement of two-phase hydrogen in a 0.5 in. tube","authors":"Benjamin Straiton ,&nbsp;Matthew Charleston ,&nbsp;Qussai Marashdeh ,&nbsp;Jonathan Harrison ,&nbsp;Matthew Reppa","doi":"10.1016/j.cryogenics.2024.103983","DOIUrl":null,"url":null,"abstract":"<div><div>Mass flow rate is a critical measurement parameter when designing cryogenic hydrogen fluid systems. It is important in custody transfer applications for calculating financial obligations, fundamental fluid property research/modeling, and fluid system design applications to optimize chill down performance, maintain thermal equilibriums, and provide feedback control for pumps and valves. However, due to the large temperature differential between cryogenic fluids and the environment, there is often multiphase flow during system chilldown and steady state operation. Current available cryogenic flow measurement techniques are not equipped to deal with the complex multiphase flow inherent in cryogenic fluid systems, resulting in significant measurement errors. This mass flow measurement inaccuracy can cause financial loss, system instability, and even component failure, resulting in a strong market demand for a multiphase cryogenic mass flow meter to optimize and control sophisticated and costly cryogenic systems. This paper presents a solution in the form of a novel capacitance-based technique for measuring the multiphase mass flow rate of cryogenic hydrogen in a terrestrial environment. The device was calibrated and tested on a ½” tube multiphase hydrogen flow loop at a cryogenic hydrogen test facility. An error of ± 2 % full scale was achieved across a range of flow conditions, including transient and steady states.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"144 ","pages":"Article 103983"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524002030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Mass flow rate is a critical measurement parameter when designing cryogenic hydrogen fluid systems. It is important in custody transfer applications for calculating financial obligations, fundamental fluid property research/modeling, and fluid system design applications to optimize chill down performance, maintain thermal equilibriums, and provide feedback control for pumps and valves. However, due to the large temperature differential between cryogenic fluids and the environment, there is often multiphase flow during system chilldown and steady state operation. Current available cryogenic flow measurement techniques are not equipped to deal with the complex multiphase flow inherent in cryogenic fluid systems, resulting in significant measurement errors. This mass flow measurement inaccuracy can cause financial loss, system instability, and even component failure, resulting in a strong market demand for a multiphase cryogenic mass flow meter to optimize and control sophisticated and costly cryogenic systems. This paper presents a solution in the form of a novel capacitance-based technique for measuring the multiphase mass flow rate of cryogenic hydrogen in a terrestrial environment. The device was calibrated and tested on a ½” tube multiphase hydrogen flow loop at a cryogenic hydrogen test facility. An error of ± 2 % full scale was achieved across a range of flow conditions, including transient and steady states.
基于电容的 0.5 英寸管内两相氢气质量流量测量仪
在设计低温氢流体系统时,质量流量是一个关键的测量参数。在计算财务义务的监管转移应用、基础流体特性研究/建模以及流体系统设计应用中,质量流量非常重要,可优化冷却性能、维持热平衡并为泵和阀门提供反馈控制。然而,由于低温流体与环境之间的温差较大,在系统降温和稳态运行期间通常会出现多相流。目前可用的低温流量测量技术不具备处理低温流体系统固有的复杂多相流的能力,因此会产生严重的测量误差。这种质量流量测量误差会造成经济损失、系统不稳定甚至部件故障,因此市场对多相低温质量流量计有着强烈的需求,以优化和控制复杂而昂贵的低温系统。本文提出了一种基于电容的新型技术解决方案,用于测量陆地环境中低温氢气的多相质量流量。该装置在低温氢气测试设施的 ½" 管多相氢气流回路上进行了校准和测试。在包括瞬态和稳态在内的一系列流动条件下,全量程误差为 ± 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信