Xiong Shi , Ao Zeng , Huabo Duan , Hui Zhang , Jiakuan Yang
{"title":"Status and development trends of phosphogypsum utilization in China","authors":"Xiong Shi , Ao Zeng , Huabo Duan , Hui Zhang , Jiakuan Yang","doi":"10.1016/j.cec.2024.100116","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphogypsum (PG) is a byproduct generated in large quantities by the phosphate industry, and it serves as a significant source of total phosphorus (TP) pollution along the Yangtze River. Environmentally sound management of PG has, therefore, become a critical challenge. This review outlines the generation processes and environmental risks associated with PG in China. It further examines the technical characteristics of various PG utilization methods and explores the relevant technical standards and policy frameworks. Enhanced utilization of PG in building materials, road construction, soil remediation, and other high-value products is essential. Additionally, the urgent need to promote ecological restoration of PG tailings ponds is emphasized. This study provides a valuable reference for developing effective technological systems for managing PG and preventing TP pollution in China.</div></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 4","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circular Economy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277316772400044X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphogypsum (PG) is a byproduct generated in large quantities by the phosphate industry, and it serves as a significant source of total phosphorus (TP) pollution along the Yangtze River. Environmentally sound management of PG has, therefore, become a critical challenge. This review outlines the generation processes and environmental risks associated with PG in China. It further examines the technical characteristics of various PG utilization methods and explores the relevant technical standards and policy frameworks. Enhanced utilization of PG in building materials, road construction, soil remediation, and other high-value products is essential. Additionally, the urgent need to promote ecological restoration of PG tailings ponds is emphasized. This study provides a valuable reference for developing effective technological systems for managing PG and preventing TP pollution in China.