Qiang Ma , Zhekai Zhu , Peng He , Yongwei Chen , Shujin Chen , Jun Wang
{"title":"Design a self-reinforcement buffer layer to assist braze SiC and Nb with Cu-xTiH2 filler alloy","authors":"Qiang Ma , Zhekai Zhu , Peng He , Yongwei Chen , Shujin Chen , Jun Wang","doi":"10.1016/j.vacuum.2024.113829","DOIUrl":null,"url":null,"abstract":"<div><div>A buffer layer was designed to assist to braze SiC and Nb. The effect of brazing temperature and holding time on the microstructure and the shear strength of the joint was analyzed. The strengthening mechanism of the joint was evaluated. The results found that the SiC-Nb joint was brazed with Cu-5TiH<sub>2</sub>, because of its good wettability on the surface of SiC. The typical microstructure of SiC-Nb joint brazed at 1060 °C for 5 min was SiC/C particles + TiC + Cu(s,s)/α-Ti + Nb(s,s)/Cu(s,s)+(Ti,Nb)<sub>5</sub>Si<sub>3</sub>+Ti<sub>5</sub>Si<sub>3</sub>/α-Ti/(Ti,Nb)Si/Nb. In addition, a buffer layer formed, which was consisted of two parts: reaction layer (α-Ti + Nb(s,s)) and infiltration layer (much C particles, little TiC and Cu(s,s)). With brazing temperature and holding time increasing, element Nb continuously diffused into brazing seam and solidified into α-Ti. With Nb content increasing, the α-Ti existed in the form of discontinuous to continuous layer, and then to particles. When Nb solidified into α-Ti continuous layer, the strength of the layer was improved and effective joining between SiC and Nb formed. In addition, the buffer layer was contributed to forming a good gradient transition of coefficient of thermal expansion (CTE), and released residual stress. So, the shear strength of the joint was increased to 52.6 MPa.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113829"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008753","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A buffer layer was designed to assist to braze SiC and Nb. The effect of brazing temperature and holding time on the microstructure and the shear strength of the joint was analyzed. The strengthening mechanism of the joint was evaluated. The results found that the SiC-Nb joint was brazed with Cu-5TiH2, because of its good wettability on the surface of SiC. The typical microstructure of SiC-Nb joint brazed at 1060 °C for 5 min was SiC/C particles + TiC + Cu(s,s)/α-Ti + Nb(s,s)/Cu(s,s)+(Ti,Nb)5Si3+Ti5Si3/α-Ti/(Ti,Nb)Si/Nb. In addition, a buffer layer formed, which was consisted of two parts: reaction layer (α-Ti + Nb(s,s)) and infiltration layer (much C particles, little TiC and Cu(s,s)). With brazing temperature and holding time increasing, element Nb continuously diffused into brazing seam and solidified into α-Ti. With Nb content increasing, the α-Ti existed in the form of discontinuous to continuous layer, and then to particles. When Nb solidified into α-Ti continuous layer, the strength of the layer was improved and effective joining between SiC and Nb formed. In addition, the buffer layer was contributed to forming a good gradient transition of coefficient of thermal expansion (CTE), and released residual stress. So, the shear strength of the joint was increased to 52.6 MPa.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.