alphaBeach: Self-attention-based spatiotemporal network for skillful prediction of shoreline changes multiple days ahead

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Jinah Kim , Taekyung Kim , Miyoung Yun , Inho Kim , Kideok Do
{"title":"alphaBeach: Self-attention-based spatiotemporal network for skillful prediction of shoreline changes multiple days ahead","authors":"Jinah Kim ,&nbsp;Taekyung Kim ,&nbsp;Miyoung Yun ,&nbsp;Inho Kim ,&nbsp;Kideok Do","doi":"10.1016/j.apor.2024.104292","DOIUrl":null,"url":null,"abstract":"<div><div>We developed a self-attention-based spatiotemporal network called <span><math><mrow><mi>a</mi><mi>l</mi><mi>p</mi><mi>h</mi><mi>a</mi></mrow></math></span>Beach that uses spatiotemporal representation learning for skillful prediction of shoreline changes multiple days ahead. The proposed model predicts the spatiotemporal position of the shoreline up to seven consecutive days in the future based on hydrodynamic forcing of ocean waves and tide data for the past 30 consecutive days. It is further divided into <span><math><mrow><mi>a</mi><mi>l</mi><mi>p</mi><mi>h</mi><mi>a</mi></mrow></math></span>Beach-w/o<!--> <!-->IC and <span><math><mrow><mi>a</mi><mi>l</mi><mi>p</mi><mi>h</mi><mi>a</mi></mrow></math></span>Beach-w/<!--> <!-->IC depending on whether or not the beach state of the antecedent historical shoreline information is used as the initial condition. <span><math><mrow><mi>a</mi><mi>l</mi><mi>p</mi><mi>h</mi><mi>a</mi></mrow></math></span>Beach-w/o<!--> <!-->IC, which does not incorporate this information, learns the sequential relationship between hydrodynamic forcing and shoreline to estimate overall trends of shoreline changes including seasonal oscillation from the point in time after model training, given only the ocean waves and tides. <span><math><mrow><mi>a</mi><mi>l</mi><mi>p</mi><mi>h</mi><mi>a</mi></mrow></math></span>Beach-w/<!--> <!-->IC does incorporate antecedent historical shoreline information to greatly enhance its predictive accuracy of shoreline progradation, retreat, and beach rotation for short-term time scales and for extreme storm events. The proposed model was applied to Tairua Beach, New Zealand, and it demonstrated superior predictive accuracy compared to previous methods and matched current understanding of accretion-dominated and oscillation-dominated shoreline changes.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"153 ","pages":"Article 104292"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a self-attention-based spatiotemporal network called alphaBeach that uses spatiotemporal representation learning for skillful prediction of shoreline changes multiple days ahead. The proposed model predicts the spatiotemporal position of the shoreline up to seven consecutive days in the future based on hydrodynamic forcing of ocean waves and tide data for the past 30 consecutive days. It is further divided into alphaBeach-w/o IC and alphaBeach-w/ IC depending on whether or not the beach state of the antecedent historical shoreline information is used as the initial condition. alphaBeach-w/o IC, which does not incorporate this information, learns the sequential relationship between hydrodynamic forcing and shoreline to estimate overall trends of shoreline changes including seasonal oscillation from the point in time after model training, given only the ocean waves and tides. alphaBeach-w/ IC does incorporate antecedent historical shoreline information to greatly enhance its predictive accuracy of shoreline progradation, retreat, and beach rotation for short-term time scales and for extreme storm events. The proposed model was applied to Tairua Beach, New Zealand, and it demonstrated superior predictive accuracy compared to previous methods and matched current understanding of accretion-dominated and oscillation-dominated shoreline changes.
alphaBeach:基于自我关注的时空网络,巧妙预测未来多日的海岸线变化
我们开发了一种名为 alphaBeach 的基于自我注意力的时空网络,它利用时空表征学习来熟练预测未来多天的海岸线变化。所提出的模型可根据过去连续 30 天的海浪和潮汐数据,预测未来连续 7 天的海岸线时空位置。alphaBeach-w/o IC 不包含这一信息,它学习水动力作用力与海岸线之间的顺序关系,以估计海岸线变化的总体趋势,包括从模型训练后的时间点开始的季节性振荡。alphaBeach-w/ IC 结合了历史海岸线的先验信息,大大提高了对短期时间尺度和极端风暴事件的海岸线上升、后退和海滩旋转的预测精度。所提出的模型被应用于新西兰的 Tairua 海滩,与以前的方法相比,该模型显示出更高的预测准确性,并与当前对增生主导型和振荡主导型海岸线变化的理解相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信