A general theory for the (s,p)-superposition of nonlinear fractional operators

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Serena Dipierro, Edoardo Proietti Lippi, Caterina Sportelli, Enrico Valdinoci
{"title":"A general theory for the (s,p)-superposition of nonlinear fractional operators","authors":"Serena Dipierro,&nbsp;Edoardo Proietti Lippi,&nbsp;Caterina Sportelli,&nbsp;Enrico Valdinoci","doi":"10.1016/j.nonrwa.2024.104251","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the continuous superposition of operators of the form <span><span><span><math><mrow><msub><mrow><mo>∬</mo></mrow><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></msub><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mspace></mspace><mi>u</mi><mspace></mspace><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>μ</mi></math></span> denotes a signed measure over the set <span><math><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>, joined to a nonlinearity satisfying a proper subcritical growth. The novelty of the paper relies in the fact that, differently from the existing literature, the superposition occurs in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>.</div><div>Here we introduce a new framework which is so broad to include, for example, the scenarios of the finite sum of different (in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>) Laplacians, or of a fractional <span><math><mi>p</mi></math></span>-Laplacian plus a <span><math><mi>p</mi></math></span>-Laplacian, or even combinations involving some fractional Laplacians with the “wrong” sign.</div><div>The development of this new setting comes with two applications, which are related to the Weierstrass Theorem and a Mountain Pass technique. The results obtained contribute to the existing literature with several specific cases of interest.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104251"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001901","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the continuous superposition of operators of the form [0,1]×(1,N)(Δ)psudμ(s,p),where μ denotes a signed measure over the set [0,1]×(1,N), joined to a nonlinearity satisfying a proper subcritical growth. The novelty of the paper relies in the fact that, differently from the existing literature, the superposition occurs in both s and p.
Here we introduce a new framework which is so broad to include, for example, the scenarios of the finite sum of different (in both s and p) Laplacians, or of a fractional p-Laplacian plus a p-Laplacian, or even combinations involving some fractional Laplacians with the “wrong” sign.
The development of this new setting comes with two applications, which are related to the Weierstrass Theorem and a Mountain Pass technique. The results obtained contribute to the existing literature with several specific cases of interest.
非线性分数算子(s,p)叠加的一般理论
我们考虑的是形式为 Δ[0,1]×(1,N)(-Δ)psudμ(s,p) 的算子的连续叠加,其中 μ 表示集合 [0,1]×(1,N) 上的有符号度量,并与满足适当次临界增长的非线性连接。本文的新颖之处在于,与现有文献不同的是,叠加同时发生在 s 和 p 中。在此,我们引入了一个新的框架,该框架非常宽泛,可以包括不同(同时发生在 s 和 p 中)拉普拉斯的有限和,或分数 p 拉普拉斯加 p 拉普拉斯,甚至是涉及一些带有 "错误 "符号的分数拉普拉斯的组合。所获得的结果为现有文献提供了几个值得关注的具体案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信